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Computational psychiatry is a rapidly growing field attempting to translate advances in computational neuroscience and machine
learning into improved outcomes for patients suffering from mental illness. It encompasses both data-driven and theory-driven
efforts. Here, recent advances in theory-driven work are reviewed. We argue that the brain is a computational organ. As such, an
understanding of the illnesses arising from it will require a computational framework. The review divides work up into three
theoretical approaches that have deep mathematical connections: dynamical systems, Bayesian inference and reinforcement
learning. We discuss both general and specific challenges for the field, and suggest ways forward.
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INTRODUCTION
Understanding the main function of an organ is important when
attempting to either understand the syndromes it engenders, or
when attempting to treat them. For instance, a theoretically
grounded understanding of the heart’s pumping function allows
us to relate shortness of breath to altered pressure gradients. The
distinctive function of the brain is computation. The brain
processes information, and alters how it processes information
as a function of the information it has processed in the past
(’learning’). That is, the brain uses information as the currency to
make models of the world in order to maximize short- and long-
term adaptation to the environment. As such, using computation
to turn information into models and to extract information from
models is the quintessential function that needs to be understood.
The basic premise of computational psychiatry is that alterations
in the computations it performs can lead to its malfunction -
mental illness. In fact, this view suggests that computa-
tional ‘errors’ can lead to illness in the absence of any other
‘neural’ problems, and can even lead to illness as a function of past
computations or processed information.
Computational psychiatry views illnesses and symptoms

through a computational lens. As an example, consider perceptual
disturbances. Perception depends strongly on the disambiguation
of ambiguous and noisy sensory information through the
integration with other information previously acquired. This
integration process can be formalized as a probabilistic inference
process. Doing so allows the perceptual disturbances to be
characterized and linked to specific underlying processes, and
thereby also to the underlying biology.
Prior to proceeding, we emphasize that illnesses are complex

phenomena defying simplistic etiological or mechanistic accounts
[1]. They are likely pluralistic and multi-causal involving multiple
levels [2]. Indeed, research has identified contributions to the
syndromes we identify as disorders arising at different levels from
genetics to neural circuits, psychological processes, and social or

societal factors. From a broad computational view, illness arises
when a mismatch occurs between the brain’s computational
ability and the environmental or situational demands placed upon
it. For instance, alterations in learning from positive and negative
decision outcomes, due to an imbalance in corticostriatal
dopaminergic function, can cause either impulsivity such as
pathological gambling [3], or tenacity in the face of frequent
setbacks. Whether the imbalance results in a feature or a problem
depends on background factors such as which goals one has in
the first place (i.e., what counts as positive or negative: the reward
function), and the statistics of rewards and losses.
Computational investigations are often subdivided into three

levels [4]. At the most conceptual level, a computational under-
standing answers questions about what problem the system
solves. For instance, what is the problem in finding actions which
are good in the longer term? And precisely why should this be
done? At a more concrete level, computational models are of
algorithmic nature and describe what computations can be used
to achieve a particular goal. Finally, computational models can
concern the implementation of algorithms. These three levels are
in principle independent. However, the strength of computational
modeling is that it allows the connections across these levels to be
made – and may even be necessary for doing so. More generally,
explanatory accounts of psychiatric disorders need to integrate
across biological, psychological and social-environmental domains
with inherent many to many relationships [5]. The argument
proposed here is that a broad computational approach is useful –
and maybe even necessary – to do this in a quantitative manner.
The explanatory models we focus on here are often ‘generative'

[6–9], meaning that the models can be run on the experiment that
individuals were subjected to and generate comparable data. This
has the advantage that the explanatory scope of models can be
rigorously tested by comparing data generated by the model with
observed experimental data. Furthermore, they do so through the
latent manipulation of variables that capture computational
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processes. As such, these modeling approaches are a way to
quantitatively test complex but detailed hypotheses about mental
processes (c.f. [10–12]). This is in contrast to descriptive models,
which may describe the statistical properties of data correctly, but
whose internal machinations are less directly interpretable or
informative about the underlying mechanisms.
Both theory- and data-driven computational approaches to

psychiatric illness are developing rapidly. While previous snapshot
summaries of the area exist [8, 13–22], the rate of progress and the
number publications in the field (Fig. 1) both mean that the state
of the art rapidly moves past these, and that even in a substantive
review as here it will not be possible to review all the work.
The contributions in this volume highlight many facets of data-

driven evidence-based and empirical computational work. These
are rapidly advancing the field and allowing researchers and
clinicians to deal with – and put to good use – the deluge of data
facing them. In the present contribution, we will summarize what
we view as the most important recent advances in theory-driven
computational work relevant to psychiatry [23]. Our aim is two-
fold: first, to illustrate, through examples, the usefulness of theory-
driven computational approaches for understanding mechanisms
in psychiatric illnesses. Second, to provide an updated snapshot of
the field. We structure the paper in terms of the class of
computational technique used. Briefly, the brain is a dynamical
system, and has to solve two fundamental problems: it has to deal
with (irreducible) uncertainty, and it has to exert control to survive.
As such, we start with dynamical systems, and then turn to
Bayesian inference and reinforcement learning. We begin each
section with a (very!) brief intuitive summary of that technique
and then highlight the important work completed using it over
the last few years. We end the review with a summary and
synthesis of the progress made, the challenges the field faces and
the key next steps.
We note that both inference and learning can be seen as special

instances of dynamical systems [24, 25], while in certain situations
learning and inference are two faces of the same coin [26, 27]. As
such, there are deep mathematical connections between dyna-
mical systems, learning and inference.

DYNAMICAL MODELS
Mental illness can be conceptualized as a dynamic process, i.e., a
state of being that changes over time. Dynamical models focus on

the rules that govern the changes of states over time, the
response to environmental input and the emerging consequences
from these rules. The dynamics involve an interaction of multiple
factors, and these interactions can unfold in surprising and
complex ways over time. For instance, the textbook view of panic
attacks involves a positive feedback cycle, where interoceptive
signals such as palpitations augment anxiety, which in turn
increases arousal and ventilatory rate resulting in increased
interoceptive signals. A positive feedback cycle is one particular
dynamical phenomenon which can be displayed by biological,
physical, societal and other dynamical systems. The field of
dynamical systems theory is concerned with the mathematical
characterization of dynamical systems, which are sets of
differential equations (or difference equations if in discrete time)
describing how variables interact with and influence each other
over time (Fig. 2). Such equations can give rise to numerous
dynamical phenomena such as attractors, oscillations, phase
transitions and even chaos ([28]; see Box 1).
An important insight arising from the study of dynamical

systems is that the observed behavior of a system is often
independent of the nature of the components involved (Boxes 2
and 3). That is, the same dynamical phenomena can be observed
at many different levels and can describe populations of neurons
[29], symptoms within an individual [30, 31], interactions between
individuals or groups of individuals [32]. Independently of the
nature of the unit, the relative behavior of the units will be
determined by the dynamical parameters, and they will display
phenomena such as attractor states, oscillations and other more
complex dynamical phenomena. Furthermore, and maybe most
importantly, the behavior of a dynamical system will often
determine the overall trajectory of the system, at the same time
as being completely at odds with the behavior of the individual
components which make up the system.
Hence, the assertion that mental illnesses are dynamic [33–35]

has profound and potentially far-reaching consequences: it may
be impossible to understand the evolution of psychiatric
symptoms without understanding the complex interactions join-
ing them together. A consequence of this complexity is that the

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Year

0

50

100

150

200

250

300
P

ub
lic

at
io

ns

Fig. 1 Count of publications listed on pubmed and referring to
“computational psychiatry” in title, abstract or keywords. The
grey bar is a linear extrapolation for 2020 based on citations up to 1
May 2020.

Box 1: Dynamical systems mathematical concepts
Differential and difference equation
These equations take the general form of ḋx/dt= f(x), where dx/dt is the rate at
which a variable changes. By relating functions f of variables x to the rate at
which the variables change, such equations capture how variables evolve over
time. For instance, if perceived palpitations in panic attacks increase proportional
to perceived palpitations, then they will grow very rapidly. Difference equations
are the analog of differential equations in discrete time.
Attractor dynamics
Some differential equations will evolve towards a set of values (the attractor)
when started within a certain range of values (the basin of attraction). In Fig. 3a,
for instance, the attractor is the set of neural activations which form a bump
in space.
Fixed point
A fixed point is a particular value x where the system does not change, meaning
that it will remain at that point. Fixed points can be attracting if the system
converges to the fixed point when started within a basin of attraction around the
fixed point, akin to a ball rolling to the bottom of a valley; or they can be unstable
if they diverge away from that point unless they are exactly at that point, akin to
a ball on top of a mountain.
Limit cycle
A limit cycle is a particular type of attractor, where the system does not settle
on one particular point, but rather cycles through a (possibly arbitrarily long)
repetitive trajectory. Neural action potentials are limit cycles.
Excitation-inhibition (E/I) balance
Excitation and inhibition in neural tissues need to be finely balanced at multiple
scales to allow for a stable range of dynamic phenomena. Alterations to this
balance has profound impacts on the observed dynamics of neural networks.
Divisive normalization
This refers to a particular type of inhibition of neurons, whereby the activity of a
neuron is divided by the local pooled activity surrounding the index neuron.
Divisive normalization accounts for neural contrast invariance and other
receptive field features in primary and higher cortices.
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effect of interventions which alter the state of some components
of the system, such as pharmacotherapy or psychotherapy, will
depend on the current global state of that system. In other words,
as frequently observed in clinical practice, the same treatment
administered to the same patient at different times will produce
different, and often counterintuitive effects if the state of the
patient has changed. Focusing attention on one’s breathing may
be good when calm, but exacerbate the panic attack during the
attack. Reflecting their general nature, dynamical systems
approaches have provided numerous insights into phenomena
ranging from intracellular to societal scales.

Linking cellular to cognitive and circuit processes via dynamical
systems
Applications of dynamical systems approach at the circuit level
have combined algorithmic and biophysical components, and
thereby allowed an understanding of how alterations at the
cellular or subcellular level impact the ability of circuits to perform
certain functions. Particular attention has been paid to so-called
attractor dynamics. One type of attractor is a stable point, where
the activity of each unit remains approximately constant over time
and returns to this activation level if slightly perturbed. Such
stable attractors have been extensively studied as network models
for persistent neural activities in working memory [36–38],
including for their ability to maintain a continuous quantity, e.g.,
a spatial location [39]. Because the stability of the overall network
activity pattern depends on their dynamic properties and how the
units interact, such models can be used to examine how
properties at the cellular level such as dopamine [40], serotonin
[41–43] or NMDA receptor function [44, 45] affect the dynamics,
and in turn how they affect the ability of the network to retain
information.
Indeed, detailed predictions from such a model were shown

to capture working memory sensitivity to distractors in
schizophrenia [46], while also accounting for the effects of
ketamine [45]. Briefly, in this model NMDA receptors on
interneurons affect the extent to which neurons inhibit their
neighbors. This in turn affects the profile of the stable attractor
‘bump' in the network. A reduction in the efficacy of the NMDA
receptor leads to a broadening and reduced stability of the
bump, and thereby to an increase in sensitivity to distractors
(Fig. 3a). Critically, both the broadening and the increase in
distractibility could be demonstrated empirically and shown to
be correlated (Fig. 3b; [46]). Indeed, direct recordings of
frontal neural assemblies in two animal models of schizophrenia
- chronic ketamine administration and a 22q11.2 deletion

model - show direct evidence of impaired attractor stability
[47], and a related model has recently been shown to explain
disruptions in serial dependencies in working memory in
schizophrenia and NMDA receptor encephalitis [48]. The notion
of a change in attractor properties in schizophrenia has also
been proposed in algorithmic models of decision-making [49],
which have also suggested specific relationships of to positive
and negative symptoms [50]. Circuit-level attractor dynamics
can be put to various uses for computational purposes, most
classically for pattern completion and memory recollection
[51, 52], but also for Bayesian inference [53, 54], multisensory
integration [55] and decision-making more generally [56]. As
such, these computational models allow a number of higher-
level cognitive functions to be related to mechanistic details at
the cellular level, and thus afford an understanding of various
psychiatric disturbances [21].
Taking a step back, attractor dynamics are one type of

computation dependent on the broader principle of balanced
excitation and inhibition (E/I). Alterations to E/I balance have
been suggested in a number of other illnesses, in particular also
in Autism Spectrum Disorders (ASD) [57]. Computational models
of E/I imbalance in ASD have focused on a feature of local
circuitry called divisive normalization. This is a very widespread
computation important for gain adaptation in visual and
auditory primary cortices [58, 59], and alterations in models of
divisive normalization can account for alterations in visual (c.f.
Figure 3) and auditory perception and possibly also higher
cognitive functions in autism [60–64]. Divisive normalization has
also been suggested as one way of implementing margin-
alization in neural circuits [65]. Marginalization is a key step in
probabilistic inference algorithms (e.g., belief propagation, c.f.
Box 1), and this provides one link for how alterations in local E/I
balance could have pervasive impacts on many different
cognitive functions, and particularly so on functions requiring
appropriately dealing with unknown latent variables such as the
intentions of others.
At a larger scale, one notable application of dynamical models

to interactions between brain areas capitalized on the fact that the
dynamical properties of a system depend on the interaction
between its components, and therefore alterations in one
component can be counteracted by alterations in another
[35, 43]. To understand how serotonergic medication might
alleviate glutamatergic deficits, [66] built a spiking network model
in which cognitive dorsolateral prefrontal cortical (dlPFC) and
affective ventral anterior cingulate (vACC) areas had reciprocal
inhibitory interactions. Glutamatergic deficits in depression were
modeled as a less efficient glutamate clearance, leading to a
situation where the affective vACC was hyperactive and impaired
the cognitive dlPFC performance through its excitatory projec-
tions to dlPFC inhibitory interneurones. Serotonergic medication
in the model was effective at treating this by hyperpolarizing the
excitatory vACC cells via 5HT-1A receptors.
The dynamical systems applications to psychiatry reviewed so

far are relatively detailed, and have mostly been used to give
qualitative accounts of experimentally observed phenomena in
the sense that they have not (with very few exceptions [67, 68])
directly been fitted to experimental data. As such their strength
lies in their ability to qualitatively link biophysical and cellular
details to higher-level phenomena.

Dynamical systems for causality, prediction and control
A different approach has been to fit dynamical systems to time-
series data relevant to mental health. There is a very rich
literature concerned with efficient identification of dynamical
features of systems from multivariate time-series data. Applica-
tions include using such dynamical systems models to under-
stand how variables interact; to characterize the overall
dynamical characteristics of the system; and to investigate
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Behavior
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Molecules

Dynamical
system:
State t

Function
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Fig. 2 Dynamical Systems. Multiple interactions between phenom-
ena at different levelscan result in behavior that is described by a
dynamical system, which is guided by a function that takes the state
of the system at time t to some later time t+ 1, with parameters that
may transcend any individual level but can be observed across
levels of analyses.
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potential interventions, i.e., to identify how to control the
system under study.
Probably the most common approach is in fitting dynamical

systems to neural data using autoregressive models to estimate
Granger causality, or dynamic causal models (DCM; [69]).
These have been used extensively over the past two decades to
examine interactions between neural substrates and their break-
down in mental illness. They are distinct from functional
connectivity approaches which focus on the correlational struc-
ture, in that they imply an underlying model of how the data
come about, and allow such models to be explicitly tested
[6, 69, 70]. DCM connectivity estimates, for instance, have
suggested that the absence of illusions such as the hollow-mask
illusion in patients with schizophrenia is due to a reduction in the
influence of top-down frontal projections [71, 72].
A very promising direction is the combination of the parameters

resulting from such fits with machine-learning techniques for
classification of predictive purposes [9, 73, 74]. [75] recently applied
this to the relationship between fMRI BOLD responses to emotional
faces and the long-term course of depressive disorders. Not only did
they find that the connectivity estimates differentiated patients with
a good and a poor longitudinal course. But because DCM involves
the fitting of an interpretable dynamical system, they were able to
then investigate parameters of the fits and point to aberrant
(reduced) modulation of the connections within and between the
amygdala and face perception areas (fusiform and occipital face
areas) by emotions. One major limitation of DCM models has
traditionally been the need to fit the model to a few selected areas.

As such, statements about the causality of interactions were subject
to confounds due to other areas not included in the analyses. A
whole-brain approach has recently been developed [76, 77] which
will help to address this. Although it involves important approxima-
tions, this promises to bring the same whole-brain causal
connectivity approach to fMRI that autoregressive models and
Granger causality have previously brought to EEG and MEG [70].
Interesting newer approaches include the examination of controll-
ability in brain networks [78–80], and the use of nonlinear dynamical
systems to directly characterize more complex dynamical modes of
brain activity [81, 82].
Dynamical systems have also been applied to the analysis of

self-report time-series data [83]. Quantitative approaches to
within-subject longitudinal data are important. First the temporal
course of psychiatric symptoms is an important window to
examining the dynamics of mental health disorders. Second, there
are fundamental limitations on the ability to generalize from cross-
sectional findings to within-subject causes [84, 85]. Third, such an
approach implies that symptoms can directly influence each other,
or whereby symptoms at least are indicators of processes that can
interact directly, and do so independently from any underlying
disease process [86, 87]. For instance, sleep disturbances and
fatigue are both symptoms of depression in both DSM and ICD
[88, 89]. However, it is eminently obvious that sleep disturbances
can directly cause daytime fatigue independently of the presence
of any depressive disorder. Furthermore, empirical estimates of
comorbidity patterns between categorical diagnoses closely track
the overlap in symptoms ([86] c.f. [90]).
These observations suggest that patterns of symptoms may

inherently stabilize each other, and that hence interactions
between symptoms may contribute both to the emergence and
stabilization of mental illnesses (e.g., [30, 31]). Indeed, in
depression the transition between episodes of wellness and
illness shows features of so-called critical slowing-down [91],
which is seen when a fixed point becomes unstable and the
system transitions into a different stable fixed point. Furthermore,
a strong coherence between different symptoms is predictive of a
more chronic long-term course of depression [92], possibly
because the symptoms maintain each other and stabilize the
overall syndrome.
Different types of models have since been applied to self-report

time series data, ranging from autoregressive models [93, 94] to
linear dynamical systems [95] and highly nonlinear dynamical
systems such as Ising models [96, 97] and most recently recurrent
neural networks [82]. The relative merits of these approaches are
beyond the scope of this review, and there are important
questions surrounding the reliability and value of complex
measures of such self-report time-series [98]. Nevertheless, a very
interesting application of such idiographic research is naturally
psychotherapy [99]. For instance, the controllability of a linear
dynamical system can be quantified and captures how costly it is
to move the system into any target state. Furthermore, such
systems can be studied to ask questions such as which symptom
is most important in that its alteration would have the strongest
desirable impact [100].

INFERENCE: DEALING WITH UNCERTAINTY
Uncertainty is baked into our lives, and two decades of work have
shown that the brain pays detailed attention to this [101–103].
Uncertainty plays a transdiagnostic role in most if not all mental
illnesses, be it because it is underestimated (e.g., in delusions),
overestimated and aversive (e.g., in anxieties) or appetitive (e.g., in
certain types of impulsivity).
Mathematically, the most consistent and correct approach to

dealing with uncertainty is through Bayes’ theorem. This suggests
that beliefs should correspond to a distribution over potential
explanations h as p(h). This distribution over explanations can be
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reduction of the inhibitory input due to a NMDA receptor
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d reproduced from [63].
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updated with evidence e by multiplying it with the likelihood
function p(e | h) such that the new belief state incorporating the
evidence is

p hjeð Þ / p ejhð Þp hð Þ (1)

Here, the likelihood term p(e|h) effectively measures how
compatible each hypothesis h is with the evidence e, and allows
the hypotheses to be weighed by their compatibility with all the
evidence or experience. The resulting distribution p(h|e) is the
posterior distribution. Further evidence can be included by
repeating this step:

p hje; enewð Þ / p enew jhð Þp hjeð Þ (2)

The belief state before including the new evidence p(h|e) was
the posterior, but is now the prior. When repeating inference to
include new information, the previous conclusion (’posterior’)
belief becomes the new prior belief. Hence, priors are one of the
vehicles through which past experience shapes the interpretation
of the present.

Disentangling prior from likelihood biases
A number of mental illnesses are thought to be characterized by
particular biases in aspects of prior beliefs affecting inference

about certain experiences or hypotheses. However, estimating
priors is often difficult [104]. This is because in controlled
experimental situations priors are measured through responses
to ’evidence’ presented in form of stimuli. This, however, usually
means that the experimentally observed responses reflect the
posterior p(h|e) rather than the prior, and hence differences
between individuals could either be due to differences in the prior
p(h) or the likelihood p(e|h) [105].
One way of measuring priors is by examining responses to

multiple different stimuli where the stimulus provides ambig-
uous information and the influence of the prior can hence be
estimated as the consistent bias across these stimuli. In
depression, prior beliefs are thought to be biased towards
hypotheses that make losses or punishments more likely. For
instance, when presented with ambiguous information about
the probability of obtaining a reward, self-reported optimism
covaries with a prior belief in a computational model of choices
[106], while depressed patients are less able to update their
initial belief when presented with disconfirming positive
information [107], possibly due to alterations to anterior
cingulate regions [108]. Conversely, anxiety seems to be
characterized by a pessimistic bias in the process of accumulat-
ing evidence, rather than in the prior [109, 110].
Prior beliefs have been extensively examined in research on

psychosis, where alterations in the integration of prior beliefs with
evidence have long been postulated to underlie hallucinations
and delusions [111, 112]. In this research, the term ’prior’ takes on
a meaning that is specific to the particular study. While, to date,
there is no clear consensus on what the precise pattern of
impairments is in psychosis [113], research is progressing rapidly
and providing an increasingly nuanced view.
One approach is to examine whether participants automatically

infer the statistical regularities in an experiment, and use this to
disambiguate information on a given trial. [114] explicitly
manipulated this, and found that neither schizotypal nor autistic
traits affected it, but that autistic traits were characterized by more
accurate perception. The majority of studies have examined more
explicitly ‘trained' priors. In these, information in a task can
be disambiguated through the use of information provided in
another form or another part of the task. For instance, [115]
binarized images into black and white such that it was very
difficult to recognize any shapes in the images. However, when
participants had been pre-exposed to the original image in color,
they could leverage this prior information and improve their
ability to discriminate the images. Strikingly, participants with
early-stage psychosis showed a stronger improvement with this
prior information. That is, these data suggest an improvement in
the ability to integrate these two types of information, and this
integration can, but need not, be viewed as the impact of a prior.
Similar finding emerge when using visual stimuli as priors on
ambiguous auditory stimuli [116], but not when using auditory
stimuli to bias ambiguous visual percepts [117].
A related process is the study of perceptual stability with

prolonged bistable stimuli. Here, healthy participants who are
delusion-prone [118], and patients with schizophrenia [119] show
less stable percepts, suggesting that the pure integration of
information over time into stable percepts is impaired (c.f. [120]).
This weakened low-level information meant that the percept was
more easily shaped by providing cues, which could be viewed as
stronger sensitivity to trained prior information [118] in the sense
of [115]. Finally, [116] used a computational model based on Eq.
(2), to examine the trial-by-trial influence from prior trials onto the
current trial, and found that it was a stronger in participants with
psychosis.
This latter view was recently refined in a new incentivized

version of the classic beads task [121] on which participants with
psychosis sampled more information, rather than less. A detailed
computational (RL; see below) model carefully adjusted for

Box 2: Inference - mathematical concepts
Probability distribution
A way of describing the probabilities of occurrence of all possible outcomes for
some event. In inference, probability distributions can be used to describe
beliefs. For example, we could represent the belief of a depressed patient about
how enjoyable parties are as a probability for every possible level of enjoyment,
from the lowest to the highest. An advantage of using probability distributions as
opposed to single numbers to describe beliefs (as used by simple RL algorithms
such as the Rescorla–Wagner rule, see section 3) is that distributions capture
uncertainty. For example, whereas a single number could describe the belief
“Parties are not very enjoyable”, a distribution can describe the belief “Parties are
probably not very enjoyable, but they might be quite enjoyable”.
Joint probability
A joint probability is the probability that two specific outcomes for separate
events occurred. The two events might be independent, for example, the
probabilities that parties are enjoyable and that the next car I see on the road will
be red, or they might be dependent, for example, the probability that parties are
enjoyable and that I will enjoy the party happening this evening. The joint
probability for outcomes a and b is written as p(a, b).
Conditional probability
A conditional probability is the probability that an outcome will occur, given a
separate outcome is known to have happened. For example, the probability that I
will enjoy tonight’s party given that parties are rarely enjoyable. The conditional
probability that event a occurred, given event b is written as p(a|b).
Marginalization
The probability distribution over one variable can be obtained by summing over
other variables in a joint distribution. This summation is referred to as
marginalization. Two variables are independent if their joint distribution is equal
to the product of their marginals. Marginalization is often necessary to properly
incorporate the influence of unobserved or latent variables.
Bayes theorem
Bayes theorem describes a simple relationship between conditional probabilities.
In inference, it can be used to describe how beliefs should be updated in the face
of new experience. For example, how the belief about parties should be revised
following the experience of attending another party. The theorem states that the
new belief, the posterior, is proportional to the existing belief, called the prior,
multiplied by the likelihood (see below for definitions of these terms).
Prior
A belief that some outcome will occur before new evidence has been
experienced. For example, this might be the belief that parties are enjoyable
before attending a party this evening.
Likelihood
The likelihood is a particular conditional probability, namely the probability of an
event given a prior belief. For example, the probability that the party tonight will
be enjoyable given that parties are rarely enjoyable.
Posterior
The posterior is a conditional probability describing the same belief as the prior,
but following the update of this belief by the evidence. For example, it might
describe the belief about how enjoyable parties are, following the experience of
attending tonight’s party.
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socioeconomic confounds, suggested that patients with delusions
formed stronger ‘prior' beliefs quickly, and then found it difficult
to shift away from these [122]. This appears in principle in keeping
with a previous study which suggested that the jumping to
conclusion bias was driven by noise in the decision-making
process, and also not due to sampling costs [123, 124].

Sequential inference models
Uncertainty is also generated by changes in the world: as the
world changes, evidence gathered in the past loses some of its
relevance. Some of these changes may be expected, others not.
The simplest sequential models simply maintain a running
average of experiences, e.g., htþ1 ¼ ht þ aðet � htÞ (e.g., [125]).
Here, the estimation ht is updated by a fraction of the difference
between ht and the evidence ht, with the size of this fraction being
controlled by the learning rate, α, which is a number between
0 and 1.
An approach that is becoming increasingly popular applies

Bayesian inference using latent variable models, such as the
Kalman filter or Hidden Markov Models [26, 126] to explicitly
estimate sources of uncertainty and effectively adapt the learning
rate α over time [127–132]. In these models (Fig. 4a), the true state
of the world (the true hypothesis h) changes over time. Such
changes can be captured in a very general manner by a
distribution p htþ1jhtð Þ where the latent state at the next time
t+ 1 depends on the latent state at the current time t. Evidence at
time t is now of course directly informative about ht, but the
extent to which it is informative about another time depends on
how the world evolves, i.e., on p htþ1jhtð Þ. As such, the
maintenance and discarding of past information implicitly
represents an assumption about the stability of the world.
For example, variability caused by changes in the underlying

association (sometimes referred to as unexpected uncertainty
[133]), means that existing beliefs are less likely to accurately

reflect current associations so learners should be more influenced
by recent outcomes and use a higher learning rate (see Fig. 4). In
contrast, variability caused by random chance (sometimes called
expected uncertainty [133]), as occurs in less deterministic
associations, reduces how informative each outcome is prompting
a reduced learning rate. As such, the learning rate can be viewed
as an assumption about how rapidly things change or how
random outcomes are.
This development has allowed research which asks whether

psychiatric symptoms are associated with the ability to flexibly
update beliefs. Evidence suggests impaired updating in anxiety
[134, 135], particularly with respect to punishments [136],
uncertainty in social interactions [137], and autism [138], with
studies in patients with schizophrenia reporting both impaired
[116, 139] and excessive updating [49]. A related line of work
indicates that humans assume positive and negative outcomes
differ in their stability and can adjust these separately [140]. This
process allows individuals to treat positive and negative outcomes
as if they were differentially informative, providing a potential
mechanism for the affective biases believed to be causally related
to depression [141–143].
Finally, uncertainty has a kind of value in itself [144]. It is useful

to sample uncertain options as this will improve our under-
standing of them allowing us to make better future choices [145].
However, sampling the unknown can also be hazardous,
particularly in aversive environments where novel options are
more likely to be dangerous (perhaps leading to negative prior
beliefs about the environment as discussed in section 3.1). An
active literature has proposed a range of algorithms by which the
value of uncertainty may be estimated and used to bias
reinforcement learning [144, 146]. In terms of clinical presenta-
tions, in anxiety disorders uncertainty appears to be aversive and
avoided [147], while in opioid addiction a tolerance of ambiguity is
predictive of relapses [148].
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REINFORCEMENT LEARNING
Symptoms of psychiatric illness very commonly involve alteration
of hedonic experience or of behaviors which lead to rewarding or
punishing outcomes. This observation has driven interest in how
humans learn about rewarding and punishing outcomes and how
they use what they have learnt to make decisions. It has also been
argued that failure modes in decision-making allow for a
principled exploration of dysfunctions on a normative platform
[105].
The field of reinforcement learning (RL) is concerned with

deriving behavior which maximizes rewards or minimizes losses in
the longer term, i.e., not just immediately, but in principle until the
end of time. In principle, this is hard, because many things can
happen in the future. One of the core insights is that these long-
term expectations of future rewards V are governed by a
deceptively simple rule:

V sð Þ ¼ E R s; s0ð Þ þ V s0ð Þ½ � (3)

This means that the total expected future rewards V sð Þ in a
state s differ from the total expected future rewards in the next
state s’ exactly by the amount of reward received on average
when going from s to s’. Taking the difference between these two
sides provides the temporal reward prediction error signal which
can be used to learn the true V ([149]; see [7] for a very brief
introduction).

Vtþ1 sð Þ ¼ Vt sð Þ þ α rt þ V t s
0ð Þ � Vt sð Þð Þ (4)

The equation describes how to update the reward expectation
of an agent at time t, V t sð Þ in response to experienced outcomes,
rt and a transition to a new state s’. We note that it is similar to the
simple running average equation in the previous section, only that
here what is averaged is the immediate reward plus the value of
the following state. This bootstrapping is at the core of why
reinforcement learning can estimate long-term rewards and
support optimal decision-making. Strikingly, dopamine neurons
appear to report this prediction error with surprising precision
[150], and this has fueled an immense research effort, of which we
here review only the most recent advances.
In applying Eq. (4) to mental illnesses, a number of questions

immediately arise. First the term rt is supposed to capture both
rewards and punishments. Clearly, this is an oversimplification. A
further question is how effort should be treated. Second, Eq. (4)
effectively describes a type of learning, i.e., of information
maintenance. How does this interact with other systems that
maintain information, such as working and episodic memory?
Third, Eq. (4) does not make reference to knowledge of the world.
Clearly, beliefs about how the world work potently influence
behavior and learning, and this will be discussed in the section on
model-based decision-making. Finally, Eq. (4) makes reference to
states s. What are they? A final question is the one discussed in the
previous section on what the learning rate α should be.

Reward sensitivity
One of the core symptoms of depression is anhedonia, a reduction
in the subjective experience of rewards and motivation. Several
studies have shown associations of anhedonia with reduced
learning from rewarding outcomes [151–153]. However, dysfunc-
tional reward learning may arise from a number of sources:
aberrant updating of values, reduced ability to maintain those
values (see section on working memory and RL below), distorted
estimates of the reward value of outcomes, or an inability to utilize
learned values when selecting actions. Furthermore, learning rate
and reward sensitivity trade off each other: in many tasks, it is
possible to compensate for any reduction in reward sensitivity by
increasing the learning rate. Although there is variability in the
literature [152–156], the most consistent effect is that increased

anhedonia is associated with a reduced effective value for
rewarding outcomes [157–160]. In other words, individuals with
higher anhedonia treat rewarding outcomes as if they were less
rewarding than those with lower anhedonia (note there is some
evidence that bipolarity is associated with the opposite effect;
[161]).
The origin of this reduction is not clear. Primary reward

sensitivity e.g., to sucrose or smells does not appear reduced,
and the reduction appears most clear in more complex
‘secondary' rewards such as pleasant visual stimuli [162], suggest-
ing a locus of dysfunction in the construction of derived values
[163], but still in the absence of impairments in the learning
process itself ([164], though see [155]), suggesting a more model-
based etiology ([163]; see below). Alternatively, it has been
suggested that an individual’s mood may interact with their
reward sensitivity, biasing estimates of the value of outcomes
[165]. Craving, the desire for drugs of abuse in addiction, indeed
does have a multiplicative effect on reward values [166],
suggesting that a similar process may also be at work in other
illnesses. Indeed, there is some evidence of such sequential
interactive processes [167], and it has been suggested that it may
improve learning in certain situations [165, 168]. However, a
miscalibration of the interplay between mood and estimated
value may exacerbate the impact of low mood and lead to
fluctuations of mood reminiscent of bipolar disorder [165, 169].

Box 3: Reinforcement learning - mathematical concepts
Agent
An agent takes actions, usually with a goal to maximize the sum of its future
rewards, given the (sensory or cognitive) state. In computer science, the agent is
an algorithm embedded in a computer, but the same notion can be applied to
biological agents.
State (S)
A state is the situation the agent is in, which might comprise sensory and
cognitive variables. Sometimes the state is “observable”, meaning it is perfectly
defined by the environment, other times its identity might need to be inferred.
For example, whether it is rainy. There are many sensory states that all indicate in
different ways that it might be rainy (sight or sound of rain, weather app on a
mobile device, or even simply a strong prior that it will rain in London).
Markov Decision Process (MDP)
An MDP is a quintuple M= 〈S, A, p, r, γ〉 with a state space S, an action space A, a
transition function mapping how current states transition to future states based
on the action p:S × A × S, a reward function mapping which states are considered
rewarding r:S × A × S→ R, and finally a discount γ determining how much more
important the immediate future is compared to the distant future.
Policy (π)
The policy is a decision rule that the agent uses to choose an action in the
current state.
State value (V)
The expected reward over the long-run, often discounted with future rewards
worth less than more immediate ones.
vðtÞ ¼ γ0rðtÞ þ γ1rðt þ 1Þ þ γ2rðt þ 2Þ:::h i. vπðSÞ is the expected value in the
current state under the decisions using policy π. Note that while “Reward” is a
short-term single signal that may be received in a given state, value is the sum of
all discounted rewards you might anticipate from that state in the future.
State-action value (Q)
The expected reward over the long-run of taking an action a in a state s. The
state value V is just the Q values averaged over the probability of taking that
action, which in turn is given by the policy π.
Structure learning/State Abstraction
In the real world, the relevant state S is often unknown: when deciding whether
to get an umbrella or not, many features might be indicative of the rain state,
and many others (e.g., music in the background) might be completely irrelevant
to this policy. Structure learning is the process of discovering the relevant states
of the environment and abstracting them to be as efficient and useful as
possible.
Model-free RL
A model-free agent learns a mapping from states to actions based on previously
experienced rewards which are “cached”, without explicitly representing the
likely future states and their available actions.
Model-based RL
A model-based agent explicitly learns the transition function p. When selecting
each action, it “plans” by considering future potential outcomes. As such it is
more flexible to any changes that may have recently occurred to the reward
values of particular states, but is more computationally expensive.
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Effort sensitivity
Motivated behavior involves an adaptive integration of costs vs
benefits of engaging in physical or cognitive effort. Several
decades of research in rodents and now humans has implicated
the dopamine system in the energization of motivated behavior
for the sake of maximizing rewards [170], an effect that can be
captured by computational models of striatal dopamine in
balancing this tradeoff [171, 172].
This framework has been further extended to account for

decisions to engage in mental as opposed to physical effort – that
is, the choice to perform a cognitively difficult task depending on
the incentive [173]. Indeed, recent studies showed that baseline
striatal dopamine synthesis capacity, as measured by PET, is
predictive of individuals’ willingness to engage in cognitive effort
[174]. Critically, this effect was not simply a shift in overall
preference. Rather, a behavioral economic analysis showed that
dopamine effects on preference were due to an amplification of
the (monetary) benefits, together with a diminution of the
subjective costs, of engaging in mental effort, and thus mirrored
the impact of striatal dopamine on cost/benefit decisions more
broadly [171]. Moreover, stimulant medications that elevate
striatal dopamine increased cognitive motivation specifically by
altering this cost/benefit ratio, most strongly in those subjects
with low baseline levels [174]. This study suggests that the use of
stimulant medications in ADHD and in the general population
might be better understood not by enhancing the ability, but
rather the subjective motivation to engage in cognitive processes,
and raise the possibility that such assessments could be useful for
predicting treatment outcomes.
Effort cost/benefit calculation is thought to be biased in

patients with MDD and schizophrenia patients with negative
symptoms, who exert reduced physical effort with increasing
incentives [175–177]. But while dopamine might be involved in
emphasizing the benefits over costs, other studies suggest that
serotonin is specifically related to cost calculations. Indeed, in a
randomized trial in healthy participants, those treated over
8 weeks with escitalopram exhibited increased willingness to
exert physical effort for monetary incentives, where the impact of
5HT manipulation could be specifically attributed to a reduction in
effort cost [178]. Accordingly, it is notable that remitted MDD
patients have also been documented to have a larger sensitivity to
anticipated effort cost which could be linked to alterations in
computational model parameters, and was predictive of relapse
after antidepressant treatment discontinuation [175]. Together,
these studies suggest that careful assessment of effort-based
decision making – by employing paradigms and models designed
to disentangle the component valuation processes – may be
promising candidates for predicting treatment outcomes resulting
from SSRIs or DA manipulations.
If reductions in cognitive effort associated with apathy or lack of

motivation are related to cost/benefit computations, can they be
ameliorated by simply increasing incentives? Recent findings
suggest that this might be feasible. In a model-based learning
task, where cognitive strategies are more effortful but can pay off,
reductions in cognitive effort linked to a range of subclinical traits
were ameliorated by larger monetary incentives, with these
incentive effects especially large in participants with depression,
anxiety, or sensation seeking [179]. On the other hand, a
transdiagnostic factor of compulsivity was related (in a separate
study) to a reduction in mental effort avoidance [180].
Finally, we note that exerting effort is only valuable if the

actions are (believed to) directly influence outcomes. Depression,
for instance, is characterized by helplessness and hopelessness.
Computationally, this can be viewed as a belief that actions have a
small probability of leading to the desired outcome [181], which in
turn strongly affects the value of those actions [182] and hence
the extent to which rewards would be able to motivate efforts
associated with the actions.

Episodic and working memory interactions with RL
The simple RL update rules in Eq. (4) are a type of memory
because the output of the update at one time point maintained
and used as the input at the next time point. These processes are
increasingly being studied in the context of cognitive and neural
processes associated with episodic and working memory.

Episodic/RL interactions. Episodic memories are affectively biased
in several disorders, particularly so in depression, where affectively
negative memories are easier to recall. A hallmark of episodic
memory is its automatic and incidental encoding of individual
sensory events such that they are bound into an episode [183]. In
fact, contemporaneous reward prediction error signals can further
enhance memories for related events [184, 185], perhaps via
neuromodulation of hippocampus [184].
In healthy controls positive RPEs have a larger benefit for

memory encoding than negative RPEs. However, in depression,
this bias is reversed [141, 143], providing a computational
formalism to explain negative memory biases in depression. We
note that the standard Eq. (4) does not include different learning
rates for rewards and losses. A recent extension of RL has shown
that biases in the learning rate from rewards and losses lead to
biased estimates; and that a distribution of learning rates can be
used to maintain distributions over values, which can allow for
more efficient learning [186].
Episodic disturbances also exist in PTSD, where aversive

memories are heavily biased towards traumatic events and are
thought not to be integrated with other memories [187]. Such
views raise complex questions about what it means to ‘integrate'
an event memory. One view from RL is that integrating a memory
means generalizing the value information from the particular state
where it was experienced to others. Thus, in complement to the
above description of RL effects on memory; episodic memory
contributions can reciprocally influence and augment reinforce-
ment learning and decision making [188]. Indeed, when episodes
are sampled from memory, reward-based decisions are biased
such that choices are influenced by outcomes linked to that
episodic context [189]. Other normative theories suggest that
episodic sampling can be useful during offline replay (e.g., during
sleep) for prioritizing which events and affective values should be
integrated into memory [190]. Such links are promising algorith-
mic avenues for exploring potential aberrations of memory
integration in PTSD.
Finally, RL signals can also regulate decisions about whether a

memory should be counted as familiar or not during declarative
memory retrieval. Signal detection theory provides a framework to
characterize both memory strength (the difference in familiarity
between encoded memories and novel ones), and the criterion on
the level of memory strength needed to reach a decision as to
whether an event is familiar or not. It is now appreciated that this
decision criterion is adaptable according to the reinforcement
value of previous memory decisions. Indeed, by manipulating
reward prediction errors during such a declarative memory task, it
was shown that striatal RPEs serve to adapt participants’ criterion
for judging events as familiar or not, and that this criterion even
transferred to other memory tasks such as free recall [191, 192].
These studies and models could provide a basis for studying
pathological adaptation of such criterion leading to biases in
memory reporting, for example in prodromal schizophrenia states.

Working memory/RL interactions. Working memory can also
greatly influence RL processes to augment learning. Much of the
RL literature assumes that progressive learning in instrumental
tasks relates to striatal dopaminergic function. However, rapid
learning in these tasks is strongly supported by prefrontal working
memory processes: participants can simply hold in mind recent
stimulus-action-outcome associations and use these to improve
performance the next time the same stimulus appears. Indeed,
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one of the most celebrated functions of the prefrontal cortex is
the active maintenance of information in working memory (WM)
in the service of adaptive behavior [193]. Information that is
relevant to a current goal is rapidly updated and maintained over
time, and can serve to guide upcoming decisions. Interestingly,
the degree to which participants engage such top-down
processes can affect the net learning rate of an RL system,
providing a systems-level mechanism by which distinct brain
systems could contribute to the adjustment of learning rate to
surprising or uncertain events, as described above.
Of course, these working memory processes are not perfect:

they are subject to capacity limitations and sensitive to
forgetting, whereas striatal reinforcement learning processes
are more incremental but less subject to capacity constraints.
This tradeoff provides a normative motivation for the existence
of these complementary systems [194] analogous to that
described for model-based vs model-free reinforcement learn-
ing (see below) [195]. Moreover, it motivates the critical need to
consider PFC and WM contributions when evaluating the nature
of RL deficits (or the impact of pharmacological treatments) in
patient populations. Indeed, many studies report RL deficits in
schizophrenia [196, 197], which are sometimes interpreted
solely in context of striatal DA-mediated alterations. However,
using experimental paradigms and computational models
designed to disentangle these processes, reward learning
deficits in medicated schizophrenia can be attributed to
pronounced reductions in prefrontal WM contributions, with
surprisingly intact learning from (and striatal signaling of)
reward prediction errors (Fig. 5; [198–200]).

Beyond the independent contributions of these systems,
recent studies have further shown that WM and RL processes
interact during learning. Top-down WM processes accelerate
the acquisition of instrumental contingencies, but because WM
can also maintain the expectation that a reward is going to
occur, this expectation also reduces the subsequent RPE, as
evidenced by both fMRI and EEG [201, 202]. This top-down
influence of WM onto RL RPEs is consistent with other
observations that cognitive and model-based expectations can
modulate model-free RPEs [203, 204] and leads to a counter-
intuitive behavioral prediction. Specifically, although instru-
mental contingencies are learned more rapidly when WM is
engaged (i.e., in low load conditions), the reduced RPEs
translate to reduced learning in the RL system, leading to more
forgetting in the long-term, when WM can no longer be
accessed. Conversely, contingencies learned under high WM
load are associated with larger RPEs that facilitate plasticity, and
are accordingly retained more robustly, as has been shown
empirically [198, 202]. This phenomenon may partially explain
the surprisingly spared retention of RL contingencies in patients
with schizophrenia [198], in spite of profoundly impaired WM
during learning, and is concordant with other computational
and empirical findings that SZ patients have reduced expected
value computations coupled with over-reliance on stimulus-
response learning [205]. More speculatively, these findings
could imply that other factors that degrade PFC WM processes,
such as stress [206], could actually be paradoxically beneficial in
terms of long term retention (provided sufficient accumulation
of RPEs during initial learning).
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Finally, as in episodic memory, RL signals can also reciprocally
influence decisions about WM. That is, how does the brain
decide which of several potential pieces of information to store
in mind, what to ignore, and when to discard previously
maintained information? In models and data, RPEs are used for
learning such gating policies in the service of optimizing
memory representations that are most useful for task perfor-
mance [207, 208]. Moreover, in addition to guiding which
representations to store, RL strategies are also used to
adaptively modulate how much information can be compressed
or chunked in working memory [209], an instantiation of the
more general notion that many cognitive heuristics or biases
can be understood as rational in the face of limited resources
[210]. Moreover, this RL-WM interaction provides a coherent set
of mechanisms relevant for understanding suboptimal resource
allocation, distractibility, and attentional focus, all of which are
features of disorders in frontostriatal circuitry including schizo-
phrenia, Parkinson’s disease, ADHD, and OCD [211].

Model-based inference: from urges to meaning
Beauty lies in the eye of the beholder, and the meaning or value of
events can be profoundly altered in mental illnesses - witness the
interpretation of mundane events as profoundly meaningful in
delusional mood, or the cognitive distortions characteristic of
depression. Formally, how an event influences us in the future
depends on what aspects of the event are stored in memory,
and how.
The models described so far in Eqs. (4) and (1) are retrospective:

Beliefs are purely a function of the past, and the future is expected
to behave just as the past did. In both those equations,
experiences are evaluated with respect to current reward
expectations, used to adapt these, and then discarded. Because
α has to be small (to avoid switching after each individual
experience), this means that a change in how rewarding an event
is will only lead to a change in expected reward after a (large)
number of experiences. An alternative approach is to use
experiences to build an explicit model of the world, and then
use this model to prospectively derive expectations about likely
rewards by simulating what might happen in the future [212]. The
strength of this model-based approach is that it affords more
flexibility to react to a change in how rewarding future events are,
but that comes at the computational cost of having to simulate
potentially exponentially many future possibilities [195]. While
model-based RL is thought to relate to goal-directed decision-
making, model-free RL as in Eq. (4) is thought to relate to habitual
decisions and incentive salience [195, 204, 213–215].
Several aspects of this model-based/model-free RL distinction

are relevant to mental illness. First, and most prominently, a shift
away from goal-directed and towards habitual decision-making
‘urges' [216] has been demonstrated for OCD [217–220] and
associated with prefrontal and myelination impairments
[217, 220, 221]. However, this shift is not diagnostically specific,
but also extends to a number of other mental illnesses including
binge eating, methamphetamine dependence [220] and schizo-
phrenia [222] but not alcohol use disorder [220, 223]. Strikingly,
the association is strongest with a ‘compulsive' factor extracted
across several different questionnaire measures [179, 180, 224–
226]. Finally, it appears to have trait features as it does not change
with improvement in OCD symptoms [227], even though it is
highly sensitive to stress and cognitive load [228–230].
Second, model-based decision-making formalises how beliefs

can fundamentally alter how experience influences behavior, i.e.,
what they ‘mean'. This is demonstrated in the now classic
experiment by [204]. Depending on the model, a reward can
lead to repeating the action that led to it, or it can lead to avoiding
it. The avoidance in this case is driven by the interpretation that a
different course of action than the one taken can enhance the
chances of another reward. Furthermore, full model-based

evaluation is so computationally demanding that it only feasible
in scenarios that are so simple as to be irrelevant. Hence, goal-
directed decision-making is itself subject to a number of
approximations, or internal ‘decisions’ about which aspects of
the future to sample [209, 231–233]. Again, these internal
decisions must be led by approximate heuristics which can easily
result in profound interpretational biases [234]. For instance,
discounting temporally distant events relative to proximal ones is
a prominent transdiagnostic feature of many illnesses [235, 236],
and temporal discounting can be altered by instructing partici-
pants to imagine (i.e., to internally simulate) the temporally distant
events [237, 238]. As such, a component of temporal discounting
may be driven by internal decisions not to simulate or ‘think of’
certain future events. Similarly, aspects of anxiety [239] and
paranoia [124] are thought to relate to model-based assumptions
about the future ability to make good choices. Indeed, there are
goal-directed components in threat aversion [240], suggesting
that imaginary exposure in the psychotherapy of anxiety disorders
may act by addressing internal sampling biases [234]. Finally, we
note here the relationship between internal simulation decisions
and metacognition [226, 241].
Third, however, the experimental ability to distinguish between

model-free and model-based decisions depends on the definition
of ‘states' and ‘actions' [242–246], or more generally on the nature
of the representation. We will turn to this next.

Structure and abstraction learning
Arguably, for mental illness, we are most interested in the nature
of more abstract cognitive representations that are used to
constrain the state space used for learning and which facilitate
transfer and generalization to novel environments. For example,
patients with autism exhibit changes in their ability to extract such
abstract structure [247].
Model-based processing, in which a person represents the full

transition structure of the consequences of their actions on future
states, provides one means to be flexible, but is very computa-
tionally expensive. While a person could attempt to re-use models
from previous contexts, a more efficient strategy is to learn task
representations that facilitate re-use of critical components of
previous task settings while collapsing over irrelevant aspects, and
flexibly recombining bits of learned knowledge to novel situations
[248, 249]. Doing so requires aspects of the ‘model' to be
‘factorized' (that is kept separate from other aspects) while also
learning whether such factorization is useful for the given
environment. Humans show such flexibility in “generalizing to
generalize” which are well captured by such computational
considerations [250], but we have yet to understand the
mechanisms by which this process occurs, or whether it can be
used to understand poor abstraction or aberrant generalization in
patients with mental illness.
Generalizing inherently requires learning representations that are

compressed: those that retain critical elements of a task or
environment structure while discarding details that may not transfer
to other situations. While the hippocampus is thought to provide
highly pattern-separated conjunctive representations storing spe-
cifics, the cortex is thought to provide more elemental and abstract
representations [183, 251, 252]. In reinforcement learning, the
“successor representation” provides one algorithmic strategy lying in
between model-based and model-free learning, which retains
aspects of a world model used for planning without all of the
specifics [253–258]. Here, a model is represented by considering the
impact of the person’s actions on the predicted visitation frequency,
and reward-predictive values, of future states, without requiring
explicit enumeration of each future action and state transition.
Mathematically, this is equivalent to learning the predicted
sequence of reward prediction errors given the person’s actions,
while discarding the specific state transitions [254]. Indeed, if one
learns abstract structures using only reward-predictive
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representations, this reduces the dimensionality of the state space in
such a way that permits transfer to novel environments that have
similar abstract features, even if the specifics of both transitions and
rewards change [255]. Critically, such abstract transfer is not afforded
by reduced representations that merely maximize reward in the
original environment. These computational considerations motivate
the study of which brain systems and mechanisms can support
learning and re-use of such abstractions and whether they can be
fruitfully interrogated to understand the nature of developmental
learning disabilities such as ASD.

Pavlovian influences
An important aspect of structure learning relates to a well-
established distinction in the animal learning literature, namely the
distinction between instrumental conditioning, where reinforce-
ments depend on the animals’ behavior, and Pavlovian condition-
ing, where reinforcements are delivered irrespective of what the
animal does. In the latter case, animals (and humans) nevertheless
still show behavior - even though it is not necessary. In fact, these

behavioral tendencies are often immutable: animals cannot learn
not to salivate when they hear the buzzer. Similar strong Pavlovian
tendencies are observable in humans and can profoundly impact
decision-making and learning [259, 260]. One way to formally
describe these is as a state value which mandates a particular action
(e.g., appetitive → approach) [259, 261, 262] and thereby can
interfere with instrumental behavior. Alternative possibilities have
been considered formally and empirically [263–265].
Pavlovian influences are increased in patients with alcohol use

disorder and are predictive of relapse [266] unlike model-based
decision-making [223]. Pavlovian escape influences are increased
in suicidal patients [267, 268]. In anxiety, there is a subtly different
bias towards avoidance behaviors that is independent of
Pavlovian values [269].

FUTURE RESEARCH DIRECTIONS
There are at several challenges for computational psychiatry to
generate a satisfactory explanatory disease model. First, there is
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evidence from genetic [270, 271] and circuit level assessments
[272, 273] of psychiatric constructs and disorders that there is
significant biological and psychological heterogeneity within and
across disorders of a similar class. This means that diagnostic labels
likely comprise individuals with differing underlying biological
architectures. In fact, it has recently been estimated that as much
as 80% of polygenic constructs such as anxiety or neuroticism may
be due to rare genetic variants that are distributed across the entire
genome [274]. The converse, however, is also true: not only does the
brain have many ways of producing the same symptoms; the very
similar brain dysfunctions can also produce a number of different
clinical symptoms. Consider for instance the phenotypic hetero-
geneity of Huntington's disease. Although as an autosomal
dominant disorder it has a simple genetic basis, the clinical
variability this results in via the modulation of multiple biochemical
pathways is enormous [275]. These clearly are tall orders, and no
easy solutions should be expected anytime soon. However, the
arguments laid out here suggest that it will be difficult to cut this
double Gordian knot without building a computational framework
that is able to relate implementational to algorithmic and functional
levels.
Second, explanatory variables capture only a small fraction of

the observed variance - they do not yet explain enough [276–278].
More specifically, many symptoms of mental illnesses are self-
reports expressed in words, and the ability to detect subtle hints in
the language of patients is both an important facet of clinicians’
skill, but also one that is hard to quantify and hence may
contribute to idiosyncrasies and poor agreement between raters.
While some of the work reviewed employs causal manipulations
that directly alters self-report (e.g., [164]; see also [279]), most of
the work reviewed here attempts to gain an understanding of
these symptoms through cross-sectional correlations, and these
tend to be low even when they replicate robustly [225, 277]. Even
if these correlations were high, the guarantees necessary for cross-
sectional patterns to be meaningful for individual subjects
longitudinally are unlikely to be given [84, 85]. Furthermore, while
different, putatively more objective, task-based measures show
comparatively better coherence amongst each other, and so do
different self-report measures, the coherence between task-
derived and self-report measures is relatively poor (Fig. 6a).
Third, part of this is due to an aspect of mechanistic research

that was underappreciated until recently, namely the tendency to
squash between-subject variability [280]. Although a number of
putatively mechanistically informative task-derived measurements
are highly robust at the group level, they often show poor test-
retest reliability, meaning that individual differences are not
robust, and less robust than self-report measures (Fig. 6b; [280–
283]). One reason in particular is that group-level effects are
maximized when individual differences are minimized. As most
mechanistic research employs group-level approaches to discover
shared mechanisms, individual variation has often intentionally
been suppressed (Fig. 6c). The fitting of generative computational
models to data may have an important role to play. Such models
can capture multiple aspects of data, such as choices and reaction
time, and ensure consistency across all aspects of the data [7]. As
such, they can improve the measurement properties by reducing
noise and improving test-retest validity (e.g., [284, 285]).

CONCLUSION
Computational psychiatry is a rapidly growing field that combines
both data-driven and theory-driven approaches. This review of
theory-driven work has shown that investigations into dynamical,
inference and learning aspects of mental illnesses are progressing
apace and becoming mature. They are allowing increasingly tight
relationships between detailed cellular and cognitive processes to
be forged and some of these have shown predictive power in
longitudinal studies.

As outlined previously [286], a core goal for computational
psychiatry is to accelerate the translation of (computational)
neuroscience into improved patient outcomes. The paths through
which computational methods can support this goal are manifold.
First, the focus in this review was on mechanisms. We have
illustrated how computational approaches allow mechanistic
hypotheses and processes to be tested. In addition, because the
brain has a computational function at its heart, they are
unavoidable when attempting to grapple with the malfunctions
observed in mental illnesses. Second, computational approaches
may provide tools for the measurement of these processes, and
thereby facilitate precision-psychiatric approaches. For instance,
tasks can be used to measure different aspects of learning and
inference, and these may be helpful for treatment stratification.
Third, the identification of computational processes can motivate
novel approaches and interventions. For instance, the work
reviewed on the importance of working memory for reinforce-
ment learning in schizophrenia, or on the separate malleability of
learning rates for appetitive and aversive events opens up novel
potential therapeutic interventions.
Nevertheless, to take this forward, we believe that the field

requires a dedicated focus on clinical applications. The field may
benefit from a move away from cross-sectional research
and towards longitudinal causal or quasi-causal study designs to
understand how individuals change over time and respond to
interventions.
The cost of acquiring data, and the importance of devising

procedures that are robust across labs and indeed across
international clinical settings renders relatively large-scale colla-
borations and consortia critically important [287]. Such collabora-
tions could also be instrumental in setting standards and agreeing
on the kinds of details which will make modeling a robust
technique for clinical applications.
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