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Goal-oriented signals from the prefrontal cortex gate the selection of appropriate actions in the basal ganglia. Key nodes within this
fronto-basal ganglia action regulation network are increasingly engaged when one anticipates the need to inhibit and override planned
actions. Here, we ask how the advance preparation of action plans modulates the need for fronto-subcortical control when a planned
action needs to be withdrawn. Functional magnetic resonance imaging data were collected while human participants performed a stop
task with cues indicating the likelihood of a stop signal being sounded. Mathematical modeling of go trial responses suggested that
participants attained a more cautious response strategy when the probability of a stop signal increased. Effective connectivity analysis
indicated that, even in the absence of stop signals, the proactive engagement of the full control network is tailored to the likelihood of stop
trial occurrence. Importantly, during actual stop trials, the strength of fronto-subcortical projections was stronger when stopping had to
be engaged reactively compared with when it was proactively prepared in advance. These findings suggest that fronto-basal ganglia
control is strongest in an unpredictable environment, where the prefrontal cortex plays an important role in the optimization of reactive
control. Importantly, these results further indicate that the advance preparation of action plans reduces the need for reactive fronto-basal
ganglia communication to gate voluntary actions.

Introduction
Our actions occasionally run into error, sometimes with dramatic
consequences. Advance preparation helps optimize performance,
but the mechanisms underlying this benefit remain elusive. Recent
advances characterize the voluntary control over our actions in
terms of the operation of action control networks in the brain, with
goal-oriented signals from prefrontal cortex gating the selection of
appropriate actions in the basal ganglia (Aron, 2011; Frank, 2011).
The operation of top–down action control is most apparent when
the need to override our planned actions occurs suddenly, sporadi-
cally, and unpredictably. In highly predictable situations, a set of
proactively prepared action plans could help the basal ganglia select
actions with less reliance on top–down control.

The dynamics of fronto-basal ganglia networks have been
studied extensively in the field of response inhibition, in which
incidental stop signals designate that a planned action needs to
be withdrawn (Aron et al., 2007; Verbruggen et al., 2010). Key

to efficient response inhibition is a fast hyperdirect pathway
connecting right inferior frontal gyrus (rIFG) and presupple-
mentary motor area (pre-SMA) with the subthalamic nucleus
(STN), as well as an indirect pathway between rIFG/pre-SMA
and the caudate nucleus (Duann et al., 2009; Jahfari et al.,
2011; Swann et al., 2011). Interestingly, when stop signals
occur frequently, action control nodes can be prepared proac-
tively, even when the expected stop signal is not presented
(Chikazoe et al., 2009; Jahfari et al., 2010; Braver, 2012). How-
ever, it is an open question whether the proactive preparation
of action plans helps in reducing the role of top– down control
in action selection.

Here, we tested whether cortico-subcortical connections im-
portant for control are modulated during proactive (prepared)
and reactive response inhibition. A probabilistic stop task with
cues indicating the likelihood of stop trials was used to manipu-
late proactive and reactive response strategies (Fig. 1A). To un-
derstand how response strategies are adjusted on go trials with
the increasing likelihood of a stop trial, the linear ballistic accu-
mulator (LBA) model was used. The LBA is a mathematical
model that can account for latent cognitive processes such as
strategic response adjustments (Fig. 1B) (Brown and Heathcote,
2008; Forstmann et al., 2011). Modulation of fronto-basal gan-
glia communication during reactive and proactive control was
examined by modeling the fMRI data with a recently developed
method called ancestral graphs (Waldorp et al., 2011). This
method can identify functional or effective connectivity con-
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strained by a model selection approach to
identify the best model of observed brain
dynamics (Fig. 2).

Using an anatomical region of interest
(ROI) approach including the rIFG, pre-
SMA, and basal ganglia nodes, we first
aimed to replicate previous findings in the
identification of the hyper-indirect model
as best for explaining activation patterns
on stop trials (Jahfari et al., 2011). We then
verified the prediction that, with the in-
creasing likelihood of a stop trial, partici-
pants should proactively recruit the same
network used for stopping during go trials.
On stop trials, top–down control of the
basal ganglia was expected to be weaker
when participants had already proactively
recruited the stop network.

Materials and Methods
Participants. A total of 16 adults (5 males; mean
age, 24.1 years; range, 21–32 years) partici-
pated in this study. In accordance with the
Declaration of Helsinki, all participants pro-
vided written consent before the scanning ses-
sion. A local ethics committee approved the
experiment, and all procedures complied with
relevant laws and institutional guidelines. All
participants were right-handed and had nor-
mal or corrected-to-normal vision.

Task and procedure. In a probabilistic stop
task (Fig. 1 A), trials were divided into 18 mini-
blocks of 20 trials with the same context. Before
each mini-block, a context cue (none, low, or
high) for the probability of stop trials was pre-
sented at the top of the screen for a period of
4000 ms. Each trial started with an jitter inter-
val of 500, 1000, 1500, or 2000 ms to obtain an
interpolated temporal resolution of 1000 ms.
During this interval, a fixation cross was pre-
sented in the center of the screen. A house or
face stimulus (go stimulus) then followed the
fixation cross for 300 ms. On stop trials, the go
stimulus was followed by a high tone (stop sig-
nal). In the low-probability context, 25% of the
trials were stop trials, whereas in the high-
probability context, 50% of the trials were stop
trials. No stop signals occurred in the none
context. The stop signal delay (SSD) between
the go stimulus and the stop signal was ad-
justed separately for the low- and high-
probability context trials according to standard
staircase methods to ensure convergence to
P(inhibit) of 0.5; SSD decreased by 50 ms after
an unsuccessful stop but increased by 50 ms
after a successful stop. Initial SSD was set to 250
ms for both low- and high-probability stop tri-
als. Each trial had a fixed duration of 4000 ms.
If participants had not responded within a time
window of 1250 ms after go stimulus presenta-
tion, feedback stating “te langzaam” (“too
slow” in Dutch) was presented for 2000 ms. To
estimate the hemodynamic response per trial
for each subject, all trials were followed by a
null trial in which only the fixation cross was
presented for 2000 ms. All stimuli were pre-
sented on a gray projection screen that was

Figure 1. Probabilistic stop task and LBA model. A, Each trial started with a cue indicating the probability that a stop signal would be
presented. The cue was followed by a house or face stimulus, indicating a left (right-hand index finger) or right (right-hand middle finger)
response. During stop trials, a tone was played at some delay (SSD) after the presentation of the go stimulus. The tone instructed partici-
pants to suppress the indicated response. The likelihood of a stop signal presentation was 25% in the low, 50% in the high, and 0% in the
none cue blocks. B, The LBA model was used to examine strategic adjustments during go trials with increasing stop signal likelihood. Model
selection was performed to identify the best model for representing the observed RT distributions (lowest BIC).

Figure 2. Graphical representation of all ancestral graphs connectivity steps. (1) The event-related BOLD measurements are
used as inputs to (2) the general linear model (GLM). (3) The seven structural fronto-basal ganglia ROIs (rIFG, pre-SMA, rSTN,
rCaudate, rGPI, rGPE, rThalamus) determine the number of nodes in the ancestral graph and are used to determine the amplitudes
for each trial separately for each region, such that (4) the covariance matrix for these regions can be determined based on
single-trial data. (5) The data covariance matrix for each condition is then compared with all defined ancestral graph models, and
each model obtains a BIC score. (6) The model with the lowest BIC values represents the group network best and is selected.
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viewed via a mirror system attached to the magnetic resonance imaging
(MRI) head coil. Before the MRI session, participants performed a prac-
tice block of 30 trials, with three mini-blocks of 10 trials, to familiarize
with the task. In the MRI scanner, participants subsequently performed
two experimental blocks, of each 9 mini-blocks, and a total of 270 go (120
none; 90 low; 60 high) and 90 stop trials (30 low; 60 high). Before each of
the two experimental blocks, instructions on a computer screen indi-
cated the response mapping for a house or face stimulus that was always
given with the right index (left) or middle (right) finger of the right hand.
For one-half of the participants, the response mapping started with “left”
for a house stimulus and “right” for a face stimulus during the first 9
mini-blocks, and reversed afterward. The order of the mapping rule was
reversed for the other one-half of the participants.

Behavioral analysis. The percentage choice errors and median reaction
times (RTs) were calculated separately for each context condition for go
and failed stop trials. Stop signal reaction time (SSRT) was estimated
separately for the low- and high-probability condition using the so-called
“integration method” (Verbruggen and Logan, 2009a). Here, the relative
finishing time of the stop process is modeled as the percentile of the go
RT distribution equal to the probability of responding given a stop signal,
P_resp. The efficiency of the stopping process, SSRT, is estimated by
subtracting the average stop signal delay (SSD) from the go RT percentile
matching P_resp. For example, when P_resp � 0.5, SSD would be sub-
tracted from the median go RT to obtain an estimate of the time needed
to withdraw a planned response (SSRT). Repeated-measures ANOVAs
were used to test how the increasing likelihood of a stop signal affects
performance on go and stop trials.

Linear ballistic accumulator model. Based on go trial RT distributions
of both correct responses and errors, the LBA model can disentangle the
speed of evidence accumulation (v), the threshold for the amount of
evidence to make a response (b), the start point of evidence accumulation
( A), the variability of this starting point (s), and the nondecision time
(t0). To gain a deeper insight into strategic response adjustments, a set of
eight different models was investigated where three LBA parameters of
interest were either fixed or varied across the three cue conditions: drift

rate (v), response threshold (b), and starting point ( A). A random-effects
model was used to combine identical models across subjects and so com-
pare models over the whole group. The best model to describe the slow-
ing of responses over conditions was selected on the basis of the lowest
total Bayesian information criterion (BIC).

Magnetic resonance imaging procedure and general analysis. The fMRI
data was acquired in a single scanning session with two runs on a 3T
scanner (Philips). Each scanning run acquired 555 functional T2*-
weighted echoplanar images (220 2 mm FOV; 96 2 in-plane resolution;
3.3 mm slice thickness; 0.3 mm slice spacing; TR, 2000 ms; TE, 28 ms; FA,
90°, ascending orientation). For registration purposes, a three-
dimensional T1 scan was acquired before the functional runs (T1; turbo
field echo, 220 2 mm FOV; 256 2 in-plane resolution; 182 slices; 1.2 mm
slice thickness; TR, 9.55 ms; TE, 4.6 ms; FA, 8; coronal orientation).

General analysis was performed using FEAT (FMRI Expert Analysis
Tool), version 5.98, part of FSL (FMRIB’s Software Library; www.fmrib.ox.
ac.uk/fsl). The first six volumes were discarded to allow for T1 equilibrium
effects. The remaining images were then realigned to compensate for small
head movements. The data were filtered in a temporal domain using a high-
pass filter with a cutoff frequency of 100 s to correct for baseline drifts in the
signal. Finally, the functional data were prewhitened using FSL. All func-
tional datasets were individually registered into 3D space using the partici-
pant’s individual high-resolution anatomical images. The individual 3D was
then used to normalize the functional data into Montreal Neurological In-
stitute (MNI) space by linear scaling (affine transformation). The statistical
evaluation was performed using the general linear model with separate re-
gressors for face and house stimuli during go trials (“none,” “low,” “high”),
successful stop trials (low, high), and failed stop trials (low, high). One re-
gressor was defined for error or missed trials, and one for the null trials in
which only the fixation cross was presented. The design matrix was
generated with a hemodynamic response function and its first deriv-
ative with local autocorrelation correction (Woolrich et al., 2001). To
replicate previous fMRI results using a probabilistic stop signal task,
we computed the following contrasts: (1) successful stop (low, high)– go

Figure 3. Participants become more cautious during go trials when the likelihood of stop
signal presentation is increased. Error bars indicate SEM.

Table 1. Models specified for ancestral graphs analysis

Model Specified path

Right hemisphere models
Indirect

1 Cx � rIFG Cx–rCaudate–rGPE–rGPI–rThalamus
2 Cx � pre-SMA
3 Cx � rIFG and pre-SMA

Hyperdirect
4 Cx � rIFG Cx–rSTN–rGPI–rThalamus
5 Cx � pre-SMA
6 Cx � rIFG and pre-SMA

Hyperdirect � indirect
7 Cx � rIFG Cx–rCaudate–rGPE–rGPI–rThalamus �

Cx–rSTN–rGPI–rThalamus
8 Cx � pre-SMA
9 Cx � rIFG and pre-SMA

Cx � ROIs used as cortex areas with unique projections to the basal ganglia.

Table 2. Behavioral data probabilistic stop task

None (0% stop) Low (25% stop) High (50% stop)

Go
Median RT (ms) 505.3 (84.5) 560.6 (86.6) 643.6 (131.6)
Choice errors (%) 4.7 (4.0) 3.0 (1.8) 1.5 (1.3)

Stop respond
Median RT (ms) — 525.8 (87.9) 598.0 (139.0)

Stop inhibit
SSD (ms) — 315.9 (111.0) 413.2 (162.1)
P_resp — 0.56 (0.01) 0.52 (0.0)
SSRT (ms) — 256.8 (44.4) 237.6 (47.3)

Values in parentheses are SDs.

Table 3. LBA model selection

Model Free parameters LBA BIC

1 b 14,672.4
2 A and b 14,729.8
3 b and v 14,730.4
4 A 14,779.3
5 A and b and v 14,831.4
6 A and v 14,908.0
7 v 15,037.0
8 None 15,159.0

Drift (v), starting point (A), threshold (b). The model with the lowest BIC was selected as the most representative
model for go trials during the probabilistic stop paradigm.
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(none), (2) failed stop (low, high)–go (none), (3) go high–go none, (4) go
low–go none. Higher-level analysis was performed using FLAME (FMRIB’s
Local Analysis of Mixed Effects) stage 1 and stage 2 with automatic outlier
detection (Beckmann et al., 2003; Woolrich et al., 2004, 2009). For the
whole-brain analysis Z (Gaussianized T/F) statistic images were thresholded
using clusters determined by z � 3.1 (stop vs go), z � 2.3 (go low or high vs
go none) with p � 0.05 (using Gaussian random field theory).

House and face stimuli were originally included for an explorative
analysis on the potential effects of preparatory control on visual areas
(Egner and Hirsch, 2005). However, because an initial analysis with the
fusiform face area and the parahippocampal place area did not yield any
clear effects of control on visual processing, these were not further
investigated.

Ancestral graphs analysis of connectivity. The graphical representation
shown in Figure 2 portrays all steps taken for the computation of ancestral
graphs connectivity and model comparisons. Ancestral graphs infer func-
tional or effective connectivity by taking into account the distribution of
BOLD activation per ROI over trials per subject, and so are not dependent on

the low temporal resolution of the time series in
fMRI. The causal interpretations of the connec-
tions from ancestral graphs can be described as
follows:

● A3B: A is a cause of B (effective
connectivity).

● A–B: A is a cause of B and/or B is cause of
A (functional connectivity).

● A7B: There is a latent comman cause of
A and B (unobserved systems).

A graphical model reflects the joint distribu-
tion of several neuronal systems with the as-
sumption that for each individual the set of
active regions is the same (as in any group anal-
ysis of connectivity). The joint distribution
(graphical model) of two nodes is estimated
from the replications of condition-specific tri-
als (for example, successful stop trials), and not
from the time series. Directed connections are
regression parameters in the usual sense (de-
noted by �) and undirected connections are
partial covariances (unscaled partial correla-
tions; denoted by �). The bidirected connec-
tions refer to the covariance of the residuals
from the regressions (denoted by �). These
three types of connections can be identified by
modeling the covariance matrix as follows:

B�1���1 0
0 � ��B�1�.

A random-effects model is used to combine
models across participants to then compare
different models over the whole group using
BIC. The graph with the lowest BIC value will
be selected. For the purpose of testing differ-
ences between connections, Waldorp et al.
(2011) combined the estimation of ancestral
graphs with a random-effects model in which
the parameters (connections) of each subject
are from a normal distribution with unknown
mean and variance. The main assumption of
the random effects model is that all partici-
pants are from the same population, but that
they can differ in connection strength. The
model is compared at the group level to other
models and is tested for fit at the individual
level. The resulting ancestral graph is the best
representation at the group level and at least an
adequate representation at the individual level.

The model selected by the BIC is the best
group representation of the connections between ROIs. To assess relative
fit between the selected model and saturated model, the ancestral graphs
method makes use of a modified version of the likelihood ratio (LR) test.
For ancestral graphs, the modified LR test is defined as the ratio of the
model of interest (hypothesis) and the unrestricted (saturated) model.
The test is corrected for being overly sensitive because the data can devi-
ate from normality slightly (Yuan and Bentler, 1997). The corrected test,
referred to as TA, has asymptotically a � 2 distribution with p( p � 1)/2 �
q degrees of freedom, where p is the number of variables and q is the
number of parameters. The test represents the relative difference in fit
between the saturated model and the hypothesized model. Smaller values
of TA indicate a good relative fit to the observed data, compared with the
full-saturated model; that is, a small value of TA means that leaving out
connections still corresponds well to the data. A significance level of � �
0.05 was used to reject models with a poor fit at the subject level. Please
see Waldorp et al. (2011) for a more detailed description of the fit pro-
cedure and TA, or a more detailed description of the ancestral graphs

Figure 4. The hyper-indirect model during reactive and proactive control. A, The hyper-indirect model, with both the hyper-
direct (left) and indirect pathway (right), was identified as the best model to represent the pattern of activation during all stop
trials. The directed white arrows represent effective connectivity between two regions; the undirected white lines represent
functional connectivity. Both the rIFG and pre-SMA projected into the rSTN and rCaudate. B, When the likelihood of a stop trial was
high, the hyper-indirect model was fully recruited on go trials. With the increasing likelihood of stop signals, the relative fit of the
hyper-indirect model to the data improved (smaller values of TA) when compared with the saturated model. Consistently, the
number of subjects where the model showed a fit to the data (number above each bar) increased with the increasing likelihood of
a stop signal. C, Strength and direction for top– down projections into the basal ganglia during proactive and reactive response
inhibition. The asterisks (*) represent significant differences in absolute connection strengths between the high and low stop
conditions. Effective connectivity (EC) was stronger but reversed in direction for the two PFC regions projecting into the rSTN (left
panel) and rCaudate (right panel) when inhibitory control was unprepared and reactive. D, While the hyper-indirect model fitted
for all participants during reactive and proactive stop trials, a better relative fit (lower TA) was found for reactive stopping, where
the defined top– down connections were more strongly recruited.
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method including comparisons with other methods like structural equa-
tion modeling or dynamic causal modeling.

To obtain the single-trial images for ancestral graph connectivity,
fMRI data processing was performed using FEAT (FMRI Expert Analysis

Tool), version 5.98, part of FSL (FM-
RIB’s Software Library; www.fmrib.ox.ac.
uk/fsl). Z (Gaussianized T/F) statistic images
were thresholded at p � 0.01 (uncorrected).
Based on previous findings (Jahfari et al., 2011), a
set of seven right hemisphere anatomical ROIs
were defined as key nodes for stop trials: rIFG
[center of gravity (cog), 51, 19, 17], rPreSMA
(cog, 9, 24, 50), rGPi (cog, 17, �6, �4), rGPe
(cog, 20, �4, 0), rCaudate (cog, 13, 10, 10),
rThalamus (cog, 11, �18, 7), and rSTN (cog, 8,
�9, �11). The STN template in MNI space was
derived from a previous study, using ultrahigh 7
tesla scanning (Forstmann et al., 2010). For each
ROI, with the exception of the STN mask, the
standardized amplitude parameters of only the
active voxels (as identified with F tests) were ob-
tained per subject, per trial, and per condition.
When the likelihood of a stop signal presentation
was low, the average number of parameters per
ROI (i.e., the average number of trials per sub-
ject) was 13.4 (SD, 2.0) for successful stop trials
and 16 (SD, 2.1) for failed stop trials. When the
likelihood of a stop signal presentation was high,
this average was 28.8 (SD, 2.5) for successful stop
trials and 30.2 (SD, 2.9) during failed stop trials.
During go trials, the average number of parame-
ters per ROI for the index finger was 41.9 (SD,
1.8) for the low and 31.9 (SD, 1.3) for the high
condition. When participants responded with
their right-hand middle finger, this average was
43.8 (SD, 1.5) for the low and 25.7 (SD, 1.1) for
the high condition. Error trials and misses were
excluded from ancestral graphs analysis.

To examine how top– down control of the
basal ganglia is modulated by proactive and re-
active response inhibition, model fits were per-
formed on the following trials: (1) successful
stop low, (2) successful stop high, (3) failed
stop low, (4) failed stop high, (5) correct go
none, (6) correct go low, and (7) correct go
high. A set of nine potential stop models con-
taining the hyperdirect, indirect, or both path-
ways were tested to find the best model that can
explain the pattern of activation in the pre-
defined regions of interest during stop trials

(see Table 1 for the specification of these models). In the current model-
ing setup, testing for direction between pre-SMA and rIFG is not possible
because both project into the same basal ganglia nodes. As a result, in-

Figure 5. Individual subject model fits on go trials. Consistent across participants, relative fits of the hyper-indirect model
improved (decreased TA) with the increasing likelihood of stop-trial presentation (x-axis). The black bars represent trials in which
a correct left response press was made, and the white bars indicate correct trials with a right response press.

Table 4. Model fits for the indirect and hyperdirect pathways during proactive and reactive response inhibition (stop) and go

Successful stop Failed stop Go none (0% stop) Go low (25% stop) Go high (50% stop)

Low (25%) High (50%) Low (25%) High (50%) Left key Right key Left key Right key Left key Right key

BIC N BIC N BIC N BIC N BIC N BIC N BIC N BIC N BIC N BIC N

Indirect
rIFC 1688.7 16 2310.7 16 1699.4 16 2481.4 16 3810.7 0 3834.0 0 3139.5 10 3158.3 5 2416.0 16 2158.5 16
Pre-SMA 1688.8 16 2320.1 16 1701.1 16 2499.4 16 3827.6 0 3837.0 0 3133.9 10 3174.8 6 2389.2 16 2161.0 16
rIFC and pre-SMA 1489.9 16 1960.4 16 1451.7 16 2112.9 16 3267.4 4 3246.9 0 2657.1 13 2660.5 13 2099.1 16 1841.8 16

Hyperdirect
rIFC 1792.7 16 2601.1 16 1866.8 16 2782.6 16 4390.3 0 4392.5 0 3631.6 8 3667.9 1 2676.9 16 2390.5 16
Pre-SMA 1785.3 16 2609.1 16 1868.7 16 2786.1 16 4413.4 0 4407.9 0 3597.9 8 3654.2 0 2686.7 16 2398.1 16
rIFC and pre-SMA 1619.9 16 2254.1 16 1648.7 16 2438.4 16 3889.3 0 3845.7 1 3179.2 8 3207.5 4 2391.0 16 2113.7 16

Hyper � indirect
rIFC 1655.4 16 2241.6 16 1654.1 16 2396.1 15 3726.0 0 3724.7 0 3108.0 5 3092.8 2 2344.9 16 2088.5 16
Pre-SMA 1628.1 16 2259.1 16 1657.7 16 2417.7 15 3766.0 0 3743.1 0 3068.8 8 3095.7 1 2327.9 16 2098.5 16
rIFC and pre-SMA 1426.3 16 1860.8 16 1387.7 16 2000.3 15 3170.5 2 3111.3 1 2580.9 12 2560.2 7 2006.3 15 1762.1 16

Lower BIC values indicate a better balance between the variance and bias of the estimated model connections. N, The number of subjects where the defined model actually fitted the activity pattern in the a priori anatomically defined ROIs.
%, Likelihood of stop trial occurrence. The best model for each condition, on the basis of lowest BIC values, is marked in bold.
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troducing a direction here will not induce any colliding arrows, and so no
other conditional independencies that are observable in the data [for a
detailed technical description of colliders, see Waldorp et al. (2011)].

Results
Behavior
Table 2 gives an overview of the behavioral data. As expected, RTs
became longer with the increasing likelihood of a stop trial (F(2,30) �
24.3; p 	 0.001), while the percentage errors decreased (F(2,30) �
10.9; p 	 0.001). Three participants did not have a sufficient number
of error trials and were excluded from LBA analyses. Model selection
indicated that the observed RT differences during go trials were best
explained by a constrained LBA model, where only the threshold
(b) for response caution was varied over the conditions (Table 3).
Inspection of the threshold (b) parameters [none: mean (M),
277.5; SD, 72.1; low: M, 312.4; SD, 75.7; high: M, 376.4; SD,
124.6] suggested that participants became more cautious on go
trials when the probability of a stop signal increased (F(2,24) �
22.4; p 	 0.001) (Fig. 3). During stop trials, the high-probability
stop condition prolonged RTs on failed stop trials (F(1,15) � 15.7;
p 	 0.01), and prolonged the SSD (F(1,15) � 26.5; p 	 0.001).
Complementing previous results, stopping performance (SSRT)
was not influenced by stop signal probability (Logan and Burkell,
1986) or by proactive response strategy adjustments (Verbruggen
and Logan, 2009b).

The hyperdirect and indirect pathways during reactive and
proactive control
Complementing previous results, random-effects analysis across
the whole group pointed toward a model that involved both the
hyperdirect and indirect pathways during successful and failed
stop trials (Jahfari et al., 2011). Note that this hyper-indirect
model (Fig. 4A) had the lowest BIC values (indicating the best
model) in all stop conditions and showed a good fit to the data
(Table 4, left side). We then examined whether this same stop
network is recruited during go trials. As displayed in Figure 4B,
the relative fit of the hyper-indirect stop model improved (de-
creased TA) consistently across subjects (Fig. 5) during go trials,
with the increasing likelihood of a stop signal. In line with this
finding, the number of participants for whom the model showed
a good fit to the observed go trial data was increased (Table 4,
right side, or number above the bars in Fig. 4B).

In addition to the connectivity analyses, we also investi-
gated a set of conventional contrasts reported in previous
studies using the stop signal paradigm (Table 5). As expected,
contrasting successful stop trials with go trials revealed activa-
tion in the rIFG, pre-SMA, left and right parietal lobe, left
insula, left frontal pole, and left and right temporal lobe. Con-
trasting failed stops with go resulted in a similar set of clusters.
In line with previous findings, the comparisons of proactive go
trials (likelihood of stop is high) with pure go trials (likelihood of
stop is none) activated nodes of the stop network including the
rIFG, pre-SMA, the right inferior parietal lobe, and the left insula.
No clusters were found when comparing the go low (likelihood of
stop is low) with go none, or the go high with go low trials.
Therefore, compared with traditional contrast analysis, changes
in connectivity patterns seem more sensitive to gradual increases
in the likelihood of stop trials.

Previous work with proactive and reactive stop paradigms has
shown that key areas important for stopping become more active
during go trials, with the increasing likelihood of a stop trial
(Chikazoe et al., 2009; Jahfari et al., 2010). The current findings
complement this by showing that not only the same areas but also

the full stop network (in terms of communication between these
areas) is prepared in advance, when participants attain a proac-
tive response strategy.

Top– down control of the basal ganglia
We hypothesized that when go is the default response (i.e.,
25% stop trials), reactive stopping relies more on action over-
ride signals from the PFC into the basal ganglia. Hence, when
go and stop responses are just as likely (i.e., 50% stop trials)
and the stop network is already proactively recruited, the
strengths of top– down projections for basal ganglia control
should be weaker. Note that the ancestral graphs method de-
fines effective connectivity as a regression (i.e., from A to B).
Here, the direction of the connection (regression) is informative
for the type of relationship, whereas the absolute regression value
is an indication of connection strength. Therefore, to test our
hypothesis, we compared the absolute normalized individual re-
gression values (effective connectivity strength) from the four
top– down connections (rIFG3 rSTN, rIFG3 rCaudate, pre-
SMA 3 rSTN, pre-SMA 3 rCaudate) of the hyper-indirect
model between the low- and high-probability stop conditions. As
predicted, effective connectivity strengths were stronger for pro-
jections into both the rSTN (F(1,15) � 5.5; p 	 0.05) and the
rCaudate (F(1,15) � 6.4; p 	 0.05) during low- compared with
high-probability signal trials (Fig. 4C). Importantly, this effect
was only present when participants successfully inhibited their
response. On failed stop trials, there were no differences in top–
down projection strengths between the high and low signal trials
(all p � 0.05).

In line with our previous findings (Jahfari et al., 2011), inspec-
tion of the type of relationship indicated that, while all top– down
projections were stronger for reactive stopping, the direction of
projections (regressions) was more positive for rIFG into the
basal ganglia while more negative for pre-SMA into the basal
ganglia. That is, when inhibition was reactive, the directed rela-
tionship was stronger positive from the rIFG into the basal gan-
glia (i.e., higher activity rIFG3 higher activity rSTN/rCaudate),
while stronger negative from the pre-SMA into the basal ganglia

Table 5. Location of increased activation in general contrasts

Anatomical
area

Cluster size
(mm 2)

MNIcoordinates(mm)
Maximum
effect sizex y z

Successful stop (high, low) � go none
Inferior frontal gyrus 137 46 23 35 3.92
Pre-SMA 1527 0 42 38 5.08
Inferior parietal lobe 1825 �60 �54 30 5.37
Inferior parietal lobe 2371 68 �32 �2 5.32
Insula 157 �30 18 �18 4.59
Frontal pole 167 �54 32 �10 3.76
Temporal lobe 587 50 20 �16 4.26
Temporal lobe 561 �68 �38 �2 4.65

Failed stop (high, low) � go none
Inferior frontal gyrus 2486 32 22 �8 7.06
Pre-SMA 2805 8 40 24 6.64
Inferior parietal lobe 1147 �58 �46 30 5.90
Insula 1042 �36 20 �12 6.84
Frontal pole 130 �24 48 22 5.03
Temporal lobe 3510 68 �34 0 7.13
Thalamus 820 8 �6 2 5.01
Cingulate gyrus posterior division 464 0 �18 26 5.98

Go high � go none
Inferior frontal gyrus 3554 28 22 �10 5.43
Pre-SMA 1450 6 34 30 4.64
Inferior parietal lobe 833 48 �40 32 3.15
Insula 647 �28 24 �8 4.77

MNI coordinates are those of the gravity point of each cluster. Cluster thresholding with z � 3.1 (stop vs go) and z �
2.3 (go high vs go low) with p 	 0.05, whole-brain corrected.
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(i.e., higher activity pre-SMA3 lower activity rSTN/rCaudate).
We will discuss the possible significance of the negative regres-
sion weights from the pre-SMA into the basal ganglia in the dis-
cussion. As shown in Figure 4D, the stronger top– down
projections were further reflected in the comparison of relative fit
between the low- and high-probability stop trials (i.e., lower TA

indicates an improved relative fit). That is, consistent across sub-
jects (Fig. 6), the hyper-indirect model provided a better repre-
sentation of the activation patterns during stopping when top–
down projections were strongest, that is, during reactive
compared with proactive control.

Discussion
The present study examined how proactive preparation of action
plans impacts the level of top– down action control during re-
sponse inhibition. Connectivity analyses indicated that the same
network used for full stopping is also recruited during go trials
with the increasing likelihood of a stop trial. Importantly, when
stopping was proactively prepared, prefrontal cortex projections
into the basal ganglia were weaker for successfully stopped trials.
That is, when inhibition was unprepared, top– down control
from the cortex into the basal ganglia was stronger for rejecting
the default (go) (Fleming et al., 2010). These differences were not
observed for failed stop trials.

Model-based connectivity comprises a novel but increasingly
important approach in the neurosciences (Bressler and Menon,
2010; Smith et al., 2011). Therefore, replication studies are essen-
tial for reliability assessments and a firm interpretation of results.
Here, we first replicated previous effective connectivity findings
by showing that both the hyperdirect and indirect pathway com-
bined best explain the pattern of activity during response inhibi-
tion (Jahfari et al., 2011). The dominance of this model relative to
the indirect or the hyperdirect pathway by themselves was re-
flected in BIC values and model fits, for both proactive and reac-
tive stop trials.

The observation that response strategies, during go trials, are
adjusted parametrically with the increasing likelihood of stop
trial presentation (as indicated by a cue) was reflected in in-
creased levels of accuracy, reaction times, and response thresh-
olds. These results support previous findings (Verbruggen and
Logan, 2009b; Greenhouse et al., 2012) and suggest that the pro-
active preparation of action plans for the go, stop, or both re-
sponses is tailored to the level of information that is available.
This interpretation was further corroborated by model fits of the
stop network to go trials. When the likelihood of a stop trial was
high, the hyper-indirect model was most representative and
showed a good fit to the data across subjects. Notably, both the

representation and model fits improved with an increasing like-
lihood of stop trial presentation, indicating that the proactive
preparation of the action control network is tailored adaptively to
the likelihood of stop signal occurrence.

Importantly, the proactive preparation to stop reduced the
need for strong top– down projections to successfully inhibit a
response. When the likelihood of a stop trial was small, stop
trials were accompanied by stronger top– down projections
from the rIFG and the pre-SMA into the rCaudate and rSTN,
respectively, to accomplish successful response inhibition.
These cortico-subcortical projections were weaker when par-
ticipants were expecting stop trials, and had already prepared
the action control network proactively. Although the hyper-
indirect model was optimal for representing all stop trials, the
top– down connections for action updating fit better for stopping
in reactive compared with proactive contexts. Various studies
have examined the role of the rIFG and the pre-SMA in response
regulation (Forstmann et al., 2008, 2010; Mostofsky and Sim-
monds, 2008) and inhibition (Chambers et al., 2009; Sharp et al.,
2010; Verbruggen et al., 2010; Zandbelt and Vink, 2010; Swann et
al., 2012). The current study extends this literature by showing
that the level of advance preparation modulates the strength and
type of fronto-subcortical communication.

As shown in Table 4, proactive and reactive control both re-
cruited the same network (best fits are found for the hyper-
indirect model in all conditions). Notably, when the likelihood of
stop trials was increased, model fits improved for go but wors-
ened for stop trials. Although the stop network was more likely to
be engaged during stop than go trials (i.e., overall BICs were
smaller for stop trials), during high probability trials BIC fits were
roughly the same for go and stop. So proactive control engaged
the stop network to a similar extent regardless of whether a stop
trial ended up occurring. When a stop trial occurred unexpect-
edly, the sudden urgency to stop, and possibly the unexpected-
ness of the stop signal itself enhanced the gain of the stop network
(improved BICs during reactive stop). In other words, the rever-
sal of fits by stop probability (i.e., low vs high) from go to stop
trials is expected due to proactive versus reactive engagements of
the stop network.

Complementing our previous connectivity findings, we observed
strong but reversed (of opposite sign) connection strengths from the
rIFG and pre-SMA into the basal gangtlia (Jahfari et al., 2011), espe-
cially when stopping was reactive and unprepared. A possible expla-
nation might be that the unprepared reactive stop trials invoke more
conflict (Yeung et al., 2004), leading to a more rapid communication
between the pre-SMA and the basal ganglia (Hikosaka and Isoda,

Figure 6. Individual subject plots of changes in relative fit (TA) during proactive and reactive stopping. The labels on the x-axis indicate the likelihood of stop signal presentation.
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2010). Specifically, the pre-SMA might detect conflict with the pre-
pared default response (go), and send a fast signal to the basal
ganglia to increase response thresholds (leading to decreased ac-
tivation in the basal ganglia), and reactivity to updating (inhibi-
tory) signals from the rIFG. Various findings in the literature are
consistent with this interpretation. First, recent studies have
linked the activity within the pre-SMA (and its connections with
the striatum) to adjustments in response caution (Forstmann et
al., 2008, 2010). Second, the literature seems to suggest that stim-
ulation of the STN has differential effects on the interactions with
rIFG (more efficient stopping) and pre-SMA (more impulsive
behavior). Specifically, one recent study using direct recordings
from the STN found fast diminishments in low-frequency power
for high relative to low conflict (leading to decreased activation),
followed by greater cue locked high-delta power at approximately
the same time of pre-SMA activation (Cavanagh et al., 2011).
Recent studies have further shown that deep-brain stimulation of
the STN leads to increased cortical activation in the right frontal
cortex (Swann et al., 2011) and improves the efficiency of stop-
ping (van den Wildenberg et al., 2006; Wylie et al., 2010; Swann et
al., 2012), while disrupting the positive correlation between pre-
SMA activation and behavioral decision thresholds (Cavanagh et
al., 2011). Finally, activity in the pre-SMA has been found to
precede activity in the rIFG during outright stopping (Swann et
al., 2012) and task switching (Neubert et al., 2010), where espe-
cially an inhibitory/updating role has been suggested for the
rIFG. Together, the current findings indicate a fast conflict-
detecting role for the pre-SMA that prepares the basal ganglia for
the updating inhibitory commands from the rIFG. An alternative
explanation could be that, on trials in which the rSTN is not
recruited as much by the rIFG, the pre-SMA becomes more active
to detect conflict (Wiecki and Frank, 2010).

Finally, we note that, as both the pre-SMA and the rIFG proj-
ect into the same basal ganglia nodes, the current approach (with
ancestral graphs) cannot informatively model a directed relation-
ship between the two cortex areas [for a detailed technical expla-
nation, see Waldorp et al. (2011)]. Therefore, although the
hyper-indirect model indicates functional connectivity between
the rIFG and pre-SMA, no inferences can be made about the
direction of this relationship during proactive and/or reactive
control. Therefore, future studies using high temporal resolution
techniques are key to further understand cortico-cortico and
cortico-subcortical interactions that underlie voluntary control
(Cohen, 2011).

To summarize, when the likelihood of response inhibition was
increased, participants proactively prepared a plan to stop even
when the signal for response inhibition was omitted. Effective
connectivity analyses indicate that proactive preparation of ac-
tion plans in highly predictable situations reduces the reliance of
the basal ganglia on the goal-oriented prefrontal cortex during
response inhibition. These findings suggest that top– down con-
trol is strongest in an unpredictable environment, in which the
PFC actively has to update the response gating basal ganglia.
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