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Behaviours are often informed by multiple types of memory. 
For example, a decision about what to eat for lunch might not 
only rely on average preferences that have been slowly learned 

over time and that aggregate over many previous experiences, but 
also be informed by specific, temporally precise memories (for 
example, ingredients seen in the fridge on the previous day). These 
different types of memory prioritize distinct aspects of experience. 
Reinforcement learning typically accumulates information across 
relevant experiences to form general preferences that are used 
to guide behaviour1, whereas episodic memories allow access to 
details about specific, previously experienced events with limited 
interference from other, similar occurrences. Work from neuroim-
aging and computational modelling suggests that these two types 
of memory have different representational requirements and are 
probably subserved by anatomically distinct brain systems2–4. In 
particular, a broad array of evidence suggests that reinforcement 
learning is implemented through cortico-striatal circuitry in the 
prefrontal cortex and basal ganglia5–8, whereas episodic memory 
seems to rely on synaptic changes in temporal lobe structures, espe-
cially the hippocampus9–15.

However, these two anatomical systems are not completely inde-
pendent. Medial temporal areas provide direct inputs into striato-
cortical regions16–18, and both sets of structures receive shared 
information through common intermediaries5–8,19. Furthermore, 
both systems receive neuromodulatory inputs that undergo con-
text-dependent fluctuations that can affect synaptic plasticity and 
alter information processing20,21. Recent work in computational 
neuroscience has highlighted potential roles for neuromodulators—
particularly dopamine—in implementing reinforcement learning. 
In particular, dopamine is thought to supply a reward prediction 
error (RPE) signal that gates Hebbian plasticity in the striatum, 
facilitating the repetition of rewarding actions5,6,22–24. In humans and 
untrained animals, dopamine RPE signals are observed in response 
to unexpected primary rewards17. But with experience, dopamine 

signals become associated with the earliest cue that predicts a future 
reward5. Such cue-induced dopamine signals are thought to serve 
a motivational role25, biasing behaviour towards effortful and risky 
actions that are undertaken to acquire rewards26–31.

Although normative roles for dopamine have frequently been 
discussed in terms of their effects on reinforcement learning and 
motivational systems, it is also likely that such signals affect process-
ing in memory systems in the medial temporal lobe32–36. For exam-
ple, dopamine can enhance long-term potentiation37 and replay38 
in the hippocampus, providing a mechanism to prioritize behav-
iourally relevant information for longer-term storage32. More recent 
work using optogenetics to perturb hippocampal dopamine inputs 
revealed a biphasic relationship, in which low levels of dopamine 
suppress hippocampal information flow, but higher levels of dopa-
mine facilitate it35. Given that dopamine levels are typically high-
est during burst-firing of dopamine neurons39—for instance during 
large RPEs5—this result suggests that memory encoding in the hip-
pocampus might be enhanced for unexpectedly positive events.

However, despite strong evidence that dopaminergic projections 
signal RPEs5,40,41 and that dopamine release in the hippocampus can 
facilitate memory encoding in non-human animals42, evidence for 
a positive effect of RPEs on memory formation in humans is scarce. 
Monetary incentives and reward expectation can be manipulated to 
improve episodic encoding, but it is not clear whether such effects 
are driven by RPEs rather than motivational signals or reward value 
per se21,33,43,44. The few studies that have closely examined the rela-
tionship between RPE signalling and episodic memory have yielded 
conflicting results about whether positive RPEs strengthen memory 
encoding45–47. However, a number of technical factors could mask a 
relationship between RPEs and memory formation in standard par-
adigms. In particular, tasks have not typically controlled for salience 
signals—such as surprise and uncertainty—that may be closely 
related to RPEs and that may exert independent effects on epi-
sodic encoding through a separate noradrenergic neuromodulatory  
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system48–51. Thus, characterizing how RPEs, surprise and uncertainty 
affect the strength of episodic encoding would be an important step 
towards understanding the potential functional consequences of 
dopaminergic signalling in the hippocampus.

Here we combine a behavioural paradigm with computational 
modelling to clarify the impact of RPEs on episodic memory encod-
ing, and to dissociate any RPE effects from those attributable to 
related computational variables such as surprise and uncertainty. 
Our goal was to better understand the relationship between rein-
forcement learning and episodic encoding at the computational 
level, which we hope will motivate future studies on the biological 
implementation of this link. Our paradigm required participants 
to view images during a learning and decision-making task before 
completing a surprise recognition memory test on the images. The 
task required participants to decide whether to accept or reject a 
risky gamble on the basis of the value of potential payouts and the 
reward probabilities associated with two image categories, which 
they learned incrementally on the basis of trial-by-trial feedback. 
Our design allowed us to measure and manipulate RPEs at mul-
tiple time points, and to dissociate those RPEs from other computa-
tional factors with which they are often correlated. In particular, our 
paradigm and computational models allowed us to manipulate and 
measure surprise and uncertainty, which have been shown to affect 
the rate of reinforcement learning52,53 and the strength of episodic 
encoding46. Surprise and uncertainty are closely related to RPEs in 
many tasks, but they are thought to be conveyed through norad-
renergic and cholinergic modulation49,50,54, whereas RPEs are car-
ried primarily by dopamine neurons5. We also assessed the degree 
to which relationships between encoding and each of these factors 
are consolidation dependent by testing recognition memory either 
immediately after learning or after a 24 h delay.

Our results revealed that participants were more likely to remem-
ber images that were presented during trials in which they accepted 
the risky gamble. Moreover, the extent of this memory benefit scaled 
positively with the RPEs induced by the images. Notably, memory 
was not affected by RPEs that were associated with the reward itself 
(on either the previous or current trial), or by surprise or uncer-
tainty. These results were replicated in an independent sample, 
which also demonstrated sensitivity to counterfactual information 
about choices the participants did not make. Collectively, these data 
demonstrate a key role for RPEs in episodic encoding, clarify the 
timescale and computational nature of interactions between rein-
forcement learning and memory, and make testable predictions 
about the neuromodulatory mechanisms underlying both processes.

Results
The goal of this study was to understand how computational fac-
tors that govern trial-to-trial learning and decision-making impact 
episodic memory. To this end, we designed a two-part study that 
included a learning task (Fig. 1a) followed by a surprise recognition 
memory test (Fig. 1i).

For each trial of the task, participants decided whether to accept 
(‘play’) or reject (‘pass’) an opportunity to gamble on the basis of 
the potential reward payout. The magnitude (value) of the poten-
tial reward was shown at the start of each trial (Fig. 1a, pink shad-
ing), whereas the probability that this reward would be obtained 
was signalled by an image unique to the trial that belonged to one 
of two possible categories—animate or inanimate (Fig. 1a, yellow 
shading). Each image category was associated with a probability 
of reward (rew) delivery, which was yoked across categories such 
that ∣ = − ∣P P(rew animate) 1 (rew inanimate) for experiment 1; these 
were decoupled for experiment 2. The participants were not given 
explicit information about the reward probabilities and thus had 
to learn them through experience. They were instructed to make 
a play or pass decision during the 3 s presentation of an image that 
was unique to the trial and, after a brief delay, were shown feedback 

that indicated the payout (Fig. 1a, blue shading). Informative feed-
back was provided on all trials—irrespective of the decision to play 
or pass—thus allowing participants to learn the reward probabilities 
associated with each image category.

Each trial involved three separate time points at which expecta-
tions could be violated, yielding three distinct RPEs. At the begin-
ning of each trial, participants were cued about the magnitude of 
the reward at stake. For trials in which larger rewards were at stake, 
participants stood to gain more than on most other trials, which 
potentially led to a positive RPE at this time (Fig. 1b, pink shading). 
This first RPE was referred to as a value RPE, because it was elicited 
by the value of the potential payout of the trial relative to the aver-
age trial.

Next, when the image was presented, its category signalled the 
probability of reward delivery, yielding an ‘image RPE’ relative to 
the reward probability of the average trial. For trials that featured 
images from the more frequently rewarded category, the par-
ticipants should raise their expectations about the likelihood of 
receiving a reward, leading to a positive image RPE (Fig. 1b, yellow 
shading). By contrast, for trials that featured images from the less 
frequently rewarded category, reward expectations should decrease 
below the mean, leading to a negative image RPE. For instance, if 
the reward probability was high for the animate category and low 
for the inanimate category, seeing an animate image should lead to 
a positive RPE, whereas seeing an inanimate image should lead to a 
negative image RPE.

Finally, feedback at the end of each trial indicated whether or 
not a reward was delivered and, if so, how large it was. This was 
expected to elicit a ‘feedback’ RPE (Fig. 1b, blue shading). In sum-
mary, the paradigm elicits value, image and feedback RPEs for each 
trial (Fig. 1c), thus allowing us to determine how each contributed 
to the variation in incidental encoding of the images.

As well as permitting dissociations among these three distinct 
RPEs, the paradigm can be used to distinguish RPEs from related 
computational factors. Specifically, although value RPEs were 
driven by the actual trial values, the other RPEs depended criti-
cally on task dynamics, which were manipulated through change 
points at which reward probabilities were resampled uniformly, 
forcing participants to update their expectations throughout the 
task (Fig. 1d). This allowed for the dissociation of RPEs from sur-
prise (how unexpected an outcome is) and uncertainty (about the 
underlying probabilities). All three factors were computed using 
a Bayesian ideal observer model that learned from the binary task 
outcomes while taking into account the possibility of change points 
(see the Bayesian ideal observer model section in the Methods). 
Qualitatively, surprise spiked at improbable outcomes, including—
but not limited to—those observed after change points (Fig. 1e). 
Uncertainty changed more gradually and was typically highest dur-
ing the periods that followed surprise (that is, when outcomes are 
volatile, one becomes more uncertain about the underlying prob-
abilities; Fig. 1f), and feedback RPEs were highly variable across 
trials and related more to the probabilistic trial outcomes than to 
transitions in reward structure (Fig. 1g). Each of these computa-
tions was distinct from the image RPEs, which depended on the 
image categories (that is, the category that signalled high versus low 
reward probability) more than on task dynamics (Fig. 1h).

Analysis of the data from 199 participants who completed the 
task online indicates that they (1) integrated reward probability 
and value information and (2) utilized RPEs, surprise and uncer-
tainty to gamble effectively. Participants increased the propor-
tion of play (gamble) responses as a function of both trial value 
and the category-specific reward probability (Fig. 2a). To capture 
trial-to-trial dynamics of subjective probability assessments, we 
fit the play or pass behaviour from each participant with a set of 
reinforcement learning models. The simplest such model fit betting 
behaviour as a weighted function of reward value and probability,  
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Fig. 1 | the dissociating effects of RPes, surprise and uncertainty on incidental memory encoding. a, Schematic of the learning task. During each trial, 
participants were first shown the value of a successful gamble for the current trial (for example, 100). Next, a unique image was shown that indicated 
the probability of reward. Participants made a play-or-pass decision. Participants were then shown their earnings if they played (top and middle rows), or 
shown the hypothetical trial outcome if they passed (bottom row). At the end of each trial a cumulative total score was displayed. b, The manipulation of 
RPEs before, during and after image presentation. For the image RPE, we show example probabilities (0.8 and 0.2) and values (100 and 20). c, Example 
learning trial showing types of RPE. The value RPE signals whether and to what extent the current value is better or worse than what is expected on 
average (10). The image RPE is computed as the difference between the expected reward of the current image category (for example, 89) and the reward 
prediction, computed as the average expected reward of the two image categories (for example, 45). The expected rewards are computed using the 
values and probabilities for reward and punishment (value: Vrew, Vpun; probability: Prew, Ppun). The feedback RPE is computed as the difference between the 
expected and experienced outcomes. d, Plot showing model predictions. Reward probabilities were determined by image category, yoked across categories 
and reset occasionally to require learning (solid black line). Binary outcomes (red and black dots, offset for visibility)—governed by these reward 
probabilities—were used by an ideal observer model to infer the underlying reward probabilities (blue line). e–h, Inputs to ideal observer model. The ideal 
observer learned in proportion to the surprise (probability) associated with a given trial outcome (e) and the uncertainty about its estimate of the current 
reward probability (f), both dissociable from RPE signals at time of feedback (g) and image presentation (h). i, The recognition memory task: in a surprise 
recognition test, participants provided a binary answer (old or new image) and a 1–4 confidence rating. Nats, natural units.
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with probabilities updated for each trial with a fixed learn-
ing rate. More complex models (see the Reinforcement learning 
model fitting section in the Methods) considered the possibil-
ity that this learning rate is adjusted according to other factors, 
such as surprise, uncertainty or choice. Consistent with previous 
research50,53,55,56, the best-fitting model adjusted the learning rate 
according to normative measures of both surprise and uncertainty  
(Fig. 2b). Coefficients that described the effects of surprise and 
uncertainty on learning rate were positive across participants 
(Fig. 2d; surprise: two-tailed t199 = 2.34, P = 0.020, d = 0.17, 95% 
confidence interval (CI) = 0.041–0.48; and uncertainty: t199 = 6.47, 
P < 0.001, d = 0.46, 95% CI = 0.74–1.39). In other words, in line with 
previous findings53, participants were more responsive to feedback 
that was surprising or was provided during a period of uncertainty. 
Thus, surprise and uncertainty scaled the extent to which feedback 
RPEs were used to adjust subsequent behaviour.

Participants completed a surprise memory test either 5 min (no 
delay, n = 109) or 24 h (24 h delay, n = 90) after the learning task. 
During the test, participants saw all of the ‘old’ images from the 
learning task along with an equal number of semantically matched 
‘new’ foils that were not shown previously. Participants provided a 
binary response that indicated whether each image was old or new, 
and a confidence rating from 1 to 4 (Fig. 1i).

Participants in both delay conditions reliably identified images 
from the learning task with above-chance accuracy (Fig. 3a;  
no delay: mean ± s.e.m.; sensitivity index d′ = 0.85 ± 0.042, 
t108 = 20.3, P < 0.001, d = 1.94, 95% CI = 0.77–0.93; and 24 h delay: 
mean ± s.e.m. d′ = 0.51 ± 0.032, t90 = 15.9, P < 0.001, d = 1.94, 95% 
CI = 0.45–0.57). Memory accuracy was better when participants 
expressed higher confidence (confidence of 3 or 4) versus lower 
confidence (confidence of 1 or 2; no delay: t93 = 13.8, P < 0.001, 
d = 1.30, 95% CI = 0.64–0.86; and 24 h delay: t83 = 9.95, P < 0.001, 
d = 0.06, 95% CI = 0.34–0.51).

To aggregate the information that was provided by the binary 
reports and confidence ratings, we transformed these into a single 
memory score with a scale of 1–8, where 8 reflected a high confi-
dence old response and 1 reflected a high confidence new response. 
As expected, the true proportion of old images increased with higher 
memory scores, in a monotonic and roughly linear manner across 
both delays (Fig. 3b). Thus, participants formed lasting memories of 
the images, and the memory scores provided a reasonable measure 
of subjective memory strength.

Recognition memory depended critically on the context in 
which the images had been presented. Memory scores were higher 
for images that were shown during trials in which the participants 
gambled (play) versus passed (Fig. 3c, Supplementary Fig. 1). 
Furthermore, the difference between memory scores for old versus 
new items was larger for play versus pass trials (t199 = 3.30, P = 0.001, 
d = 0.23, 95% CI = 0.049–0.20) and this did not differ across delay 
conditions (t198 = 0.41, P = 0.69, d = 0.058, 95% CI = −0.12–0.18;  
Fig. 3d). Higher memory scores were produced—at least in part—by  
increased memory sensitivity. Across all possible memory scores, 
the hit rate was higher for play versus pass trials, and the area under 
the receiver operating characteristic (ROC) curves was greater for 
play versus pass trials (Fig. 3e; t199 = 3.53, P < 0.001, d = 0.25, 95% 
CI = 0.0066–0.023). We found no evidence that this play versus 
pass effect differed across delay conditions (t198 = 0.36, P = 0.72, 
d = 0.051, 95% CI = −0.014–0.020).

Next, we tested whether this memory enhancement could be 
driven by positive image RPEs (Fig. 1h), which would motivate 
play decisions (Fig. 2a). Indeed, the degree of memory enhance-
ment in play trials depended on the magnitude of the image RPE. 
Specifically, memory scores in play trials increased as a func-
tion of the image RPE (Fig. 4a; t199 = 4.33, P < 0.001, d = 0.31, 95% 
CI = 0.0032–0.0086), with no evidence of a difference between 
the delay conditions (t198 = −0.11, P = 0.92, d = −0.015, 95% 
CI = −0.0057–0.0051). Moreover, this effect was most prominent in 
participants whose gambling behaviours were sensitive to trial-to-
trial fluctuations in probability and value (Spearman’s ρ = 0.17, 95% 
CI = 0.033–0.30, P = 0.016, n = 200; see the Descriptive analysis sec-
tion in the Methods).

To better understand this image RPE effect, we explored the rela-
tionship between memory score and the constituent components of 
the image RPE signal. The image RPE depends directly on the prob-
ability of reward delivery cued by the image category relative to the 
average reward probability. By contrast, variations in the trial value 
should not directly affect the image RPE, because the participant 
already knows the trial value when the image is displayed. In other 
words, the participant knows the potential payoff—the value—at 
the outset of the trial (‘I could win 100 points!’), but the probability 
information that is carried by the image can elicit either a strong 
positive (‘and I almost certainly will win’) or negative (‘but I prob-
ably will not win’) image RPE.

Consistent with this conceptualization, subsequent memories 
were stronger for play trials in which the image category was associ-
ated with a higher reward probability (Fig. 4c; t199 = 4.38, P < 0.001, 
d = 0.31, 95% CI = 0.25–0.67), but not for play trials with higher 
potential outcome values, which were—if anything—associated 
with slightly lower memory scores (Fig. 4e; t199 = −1.99, P = 0.048, 
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d = −0.14, 95% CI = −0.0020–0.0000). Reward probability effects 
were stronger in participants who displayed more sensitivity to 
probability and value in the gambling task (Spearman’s ρ = 0.18, 
95% CI = 0.044–0.31, P = 0.010, n = 200).

To rule out the possibility that the effect of image RPE on subse-
quent memory strength is driven by a change in response bias rather 
than an increase in stimulus-specific discriminability, we repeated 
the same analysis using corrected recognition scores (hit rate minus 
the false-alarm rate)—rather than our memory score—as the metric 
for recognition memory. We found a positive effect of image RPE on 
corrected recognition, which was consistent with the idea that posi-
tive image RPEs enhanced memory accuracy rather than causing 
a shift in the decision criteria (t199 = 2.04, P = 0.045, d = 0.14, 95% 
CI = 0.0000–0.0015; Supplementary Fig. 2).

Finally, we tested for an effect of reward uncertainty on memory, 
noting that uncertainty about the trial outcome is greater at prob-
abilities near 0.5 than for probabilities near 0 or 1. We found no 
effect of reward uncertainty on memory (Supplementary Fig. 3).

We found no evidence for an effect of feedback RPE, uncertainty 
or surprise on subsequent memory strength. There was no evidence 
that memory scores were systematically related to the feedback 
RPE experienced either for the trial preceding image presentation  
(Fig. 5a; t199 = −0.93, P = 0.36, d = −0.065, 95% CI = −0.0043–0.0016) 
or immediately after image presentation (Fig. 5b; t199 = −1.26, 
P = 0.21, d = −0.089, 95% CI = −0.0021–0.0005). Similarly, we found 
no evidence that the surprise and uncertainty associated with feed-
back preceding (surprise: Fig. 5c, Supplementary Fig. 4; t199 = 0.99, 
P = 0.32, d = 0.070, 95% CI = −0.97–2.94; or uncertainty: Fig. 5e; 
t199 = −0.82, P = 0.42, d = −0.058, 95% CI = −0.17–0.071) or follow-
ing (surprise: Fig. 5d; t199 = 1.53, P = 0.13, d = 0.11, 95% CI = −0.42–
3.32; or uncertainty: Fig. 5f; t199 = −0.67, P = 0.51, d = −0.047, 95% 
CI = −0.18–0.091) image presentation were systematically related to 
subsequent memory scores, despite the fact that participant betting 
behaviour strongly depended on both factors (Fig. 2c).

To better estimate the contributions of learning-related compu-
tations to subsequent memory strength, we constructed a hierarchi-
cal regression model that was capable of (1) pooling information 
across participants and delay conditions in an appropriate manner, 
(2) estimating the independent contributions of each factor while 
simultaneously accounting for all others and (3) accounting for the 
differences in memory scores that were attributable to the images 
themselves. Using the hierarchical regression model, we attempted 
to predict memory scores by estimating coefficients at the level of 
images and participants, as well as estimating the mean parameter 

value over participants and the effect of delay condition for each 
parameter (Fig. 6a).

Consistent with the results presented thus far, the hierarchical 
regression results support the notion that encoding was strength-
ened by the decision to gamble (play versus pass) and by image 
RPEs, but not by the computational factors that controlled learning 
rate (surprise and uncertainty). Play trials were estimated to con-
tribute positively to encoding, as indexed by uniformly positive val-
ues for the posterior density on the play or pass parameter (Fig. 6b, 
column 2, top; mean (95% CI) play coefficient = 0.078 (0.05–0.1); 
Supplementary Table 1). The reward probability associated with the 
displayed category was positively related to subsequent memory 
in play trials (Fig. 6b, column 3; mean (95% CI) probability coef-
ficient = 0.047 (0.01–0.08); Supplementary Table 1), as was its inter-
action with value (Fig. 6b, column 5; mean (95% CI) probability 
× value coefficient = 0.042 (0.01–0.07); Supplementary Table 1). 
However, there was no reliable effect of value itself and, if anything, 
there was a slight trend towards stronger memories for lower trial 
values (Fig. 6b, column 4; mean (95% CI) value coefficient = −0.03 
(−0.05–0.0001); Supplementary Table 1); this was not replicated 
in our second experiment (see Experiment 2 below). The direc-
tion of the interaction between value and probability suggests that 
participants were more sensitive to image probability during trials 
in which there were more points at stake; this is consistent with a 
memory effect that scales with the image RPE (Fig. 1b, yellow shad-
ing). All of the observed effects were selective for old images viewed 
in the learning task, as the same model fit to the new, foil images 
yielded coefficients near zero for every term (Supplementary Fig. 
5). Consistent with our previous analysis, coefficients for the uncer-
tainty and surprise terms were estimated to be near zero (Fig. 6b, 
columns 6 and 7; mean (95% CI) surprise and uncertainty coeffi-
cients = 0.012 (−0.01–0.03) and −0.019 (−0.04–0.01), respectively; 
Supplementary Table 1).

The model allowed us to examine the extent to which any subse-
quent memory effects required a consolidation period. In particu-
lar, any effects on subsequent memory that were stronger in the 24 h 
delay condition versus the no delay condition might reflect an effect 
of post-encoding processes. Despite evidence from studies using 
animal models showing that dopamine can robustly affect memory 
consolidation42, we did not find strong support for any of our effects 
being consolidation dependent (note the lack of positive coefficients 
in the bottom row of Fig. 6b, which would indicate effects that are 
stronger in the 24 h condition). As might be expected, participants 
in the no delay condition tended to have higher memory scores 
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overall (Fig. 6b, column 1, bottom; mean (95% CI) delay effect 
on memory score = −0.14 (−0.23 to −0.05); Supplementary Table 
1); however, their memory scores also tended to change more as 
a function of reward probability (Fig. 6b, column 3, bottom; mean 
(95% CI) delay effect on probability modulation = −0.043 (−0.07 to 
−0.01); Supplementary Table 1) than the memory scores of equiva-
lent participants in the 24 h delay condition. These results reveal the 
expected decay of memory over time and suggest that the image 
RPEs were associated with an immediate boost in memory accuracy 
that decays over time.

It is possible that these memory effects may have been driven—
at least in part—by anticipatory attention. Specifically, participants 
may have entered a heightened state of attention during play trials 
with large image RPEs, as they may have been eagerly anticipating 
feedback on such trials. Although our paradigm did not include a 
direct measure of attention, we addressed this question by deter-
mining which factors modulate the effect of feedback on trial-to-
trial choice behaviour. If a change in anticipatory attention affects 
the degree to which images are encoded in episodic memory, this 

increased attention should also lead to an increased effect of feed-
back on subsequent choice behaviour. To test this hypothesis, we 
extended the best-fitting behavioural model such that the learning 
rate could be adjusted for each trial according to the choice (play 
versus pass) made on that trial as well as the image RPE received 
during play trials. The addition of these terms worsened the model 
fit (Supplementary Fig. 6a; t199 = −7.40, P < 0.001, d = −0.52, 95% 
CI = −2.28 to −1.32), providing no evidence that choices or image 
RPEs influence the degree to which feedback influences subsequent 
choice. However, parameter fits within this model revealed a ten-
dency for participants to learn more from feedback during play tri-
als than during pass trials (Supplementary Fig. 6b; mean β = 0.23, 
t199 = 2.57, P = 0.011, d = 0.18, 95% CI = 0.054–0.41), whereas it 
revealed no consistent effect of image RPEs on feedback-driven 
learning (Supplementary Fig. 6b; mean β = 0.16, t199 = 1.29, P = 0.20, 
d = 0.091, 95% CI = −0.84–0.40). These analyses suggest that antici-
patory attention probably mediated our play or pass effects at least 
to some degree, but they do not provide any evidence for a role of 
anticipatory attention in modulating the memory benefits that are 
conferred by large image RPEs.

In summary, behavioural data and computational modelling 
revealed important roles for surprise, uncertainty and feedback 
RPEs during learning. However, only decisions to gamble (play) 
and image RPEs influenced subsequent memory. The memory ben-
efits conferred by gambling and high image RPEs were consolida-
tion independent. To better understand the image RPE effect, and to 
ensure the reliability of our findings, we conducted a second experi-
ment.

Our initial findings suggested that variability in the strength of 
memory encoding was related to computationally derived image 
RPEs and the gambling behaviour that elicited them. However, 
the yoked reward probabilities in experiment 1 ensured that the 
reward probabilities associated with the presented and unpresented 
image categories were perfectly anti-correlated on every trial. Thus, 
although an image from the high-probability reward category 
would increase the expected value and thus elicit a positive image 
RPE, we could not determine whether this positive RPE was driven 
directly by the reward probability associated with the presented 
image category, the counterfactual reward probability associated 
with the alternate category or—as might be predicted for a true pre-
diction error—their difference. To address this issue, we conducted 
an experiment in which expectations about reward probability were 
manipulated independently for each trial, allowing us to distinguish 
between these alternatives.

In the new learning task, the reward probabilities for the two 
image categories were independently manipulated. Thus, during 
some of the trials both image categories were associated with a high 
reward probability, whereas during other trials both image catego-
ries were associated with a low reward probability, or one image 
category was associated with a high reward and the other was asso-
ciated with a low reward (Fig. 7a). In this design, RPEs are relatively 
small when the reward probabilities are similar across image catego-
ries but deviate substantially when the reward probabilities differ 
across the image categories (Fig. 7c). Thus, if the factor boosting 
subsequent memory is truly an RPE, it should depend positively on 
the reward probability associated with the observed image category, 
but negatively with the reward probability associated with the other 
(unobserved) category.

A total of 174 participants completed experiment 2 online (no 
delay: n = 93; 24 h delay: n = 81). Participants in both conditions 
reliably recognized images from the learning task with above-
chance accuracy (Fig. 7d; no delay: mean ± s.e.m. d′ = 0.90 ± 0.058, 
t90 = 15.5, P < 0.001, d = 1.62, 95% CI = 0.79–1.02; and 24 h delay: 
d′ = 0.53 ± 0.035, t81 = 15.4, P < 0.001, d = 1.62, 95% CI = 0.46–0.60). 
We also observed a robust replication of the effect of gambling 
behaviour on memory, as recognition accuracy was significantly 

Trial value

M
em

or
y 

sc
or

e

Trial value

M
em

or
y 

sc
or

e

Image RPE

M
em

or
y 

sc
or

e

Play
Pass

Image RPE

Play
Pass

a

c

e

b

d

f

P(rew)

M
em

or
y 

sc
or

e

P(rew)

M
em

or
y 

sc
or

e

No delay 24 h delay

M
em

or
y 

sc
or

e

–20 –10 0 10 20

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

–20 –10 0 10 20

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

1 5 10 20

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

100 1 5 10 20 100

Fig. 4 | Recognition of memory strength depends on the RPe at the 
time of image presentation, but not directly on trial value. a,b, Positive 
association between subsequent recognition memory and RPE during 
image presentation for no delay (a; blue) and 24 h delay (b; red) conditions 
(no delay, n = 109; 24 h delay, n = 90). c–f, Positive association of 
recognition memory with reward probability estimates (c,d), but not with 
the reward value (e,f) associated with the image. This suggests that the 
RPE that occurs during image presentation—but not the overall value of the 
image—is driving the subsequent memory effect. Data are mean ± s.e.m. 
The legends in a and b apply to their respective columns.

NAtuRe HuMAN BeHAvIouR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ArticlesNature HumaN BeHaviour

increased for images from play versus pass trials (Fig. 7e; t173 = 3.93, 
P < 0.001, d = 0.30, 95% CI = 0.078–0.24). As in experiment 1, we 
found no evidence that this effect differed between delay conditions 
(t172 = −0.31, P = 0.76, d = −0.047, 95% CI = −0.18–0.13).

The new experimental design permitted the analysis of variabil-
ity in memory scores for each old image as a function of the reward 
probability of its category (image category) versus the reward prob-
ability associated with the other, counterfactual category (other cat-
egory). Based on the image RPE account, we expected to see positive 
and negative effects on memory for the image category and other 
category, respectively. Indeed, for both delays there was a cross-over 
effect whereby memory scores scaled positively with the reward 
probability associated with the image category (Fig. 7f; t173 = 2.38, 
P = 0.019, d = 0.18, 95% CI = 0.043–0.46), but negatively with the 
reward probability associated with the other category (t173 = −2.45, 
P = 0.015, d = −0.19, 95% CI = −0.43 to −0.046). These effects did 
not differ by delay (image category: t172 = 0.27, P = 0.79, d = 0.041, 
95% CI = −0.36–0.48; other category: t172 = 0.43, P = 0.67, d = 0.065, 
95% CI = −0.30–0.47).

To better estimate the effects of image category, other category, 
and play or pass behaviour on subsequent memory, we fit the  

memory score data with a modified version of the hierarchical regres-
sion model that included separate reward probability terms for the 
image and other categories. Posterior density estimates for the play or 
pass coefficient were greater than zero (Fig. 8a, Supplementary Table 1),  
replicating our findings in experiment 1. The posterior densities 
for the image category and other category probabilities were con-
centrated in the region over which the image category was greater 
than other category (mean (95% CI) image category coefficient 
minus other category coefficient: 0.052 (0.015–0.94)) and supported 
independent and opposite contributions of both category probabili-
ties (Fig. 8b, Supplementary Table 1). These results—in particular 
the negative effect of other category probability on the subsequent 
memory scores (mean (95% CI) other category coefficient = −0.03 
(−0.06 to −0.001))—are more consistent with an RPE effect than 
with a direct effect of reward prediction itself. More generally, these 
results support the hypothesis that image RPEs enhance the degree 
to which such images are encoded in episodic memory systems.

Despite the general agreement between the two experiments, 
there was one noteworthy discrepancy. Although the hierarchical 
models that were fit to both datasets indicated a higher probability 
of positive coefficients for the interaction between value and prob-
ability (for example, positive effects of reward probability on mem-
ory are greater for high-value trials), the 95% CIs for these estimates 
in experiment 2 included zero as a possible coefficient value (mean 
(95% CI) probability × value coefficient = 0.007 (−0.019–0.034); 
Supplementary Table 1), indicating that the initial finding was not 
replicated in the strictest sense.

To better understand this discrepancy and to make the best 
use of the data, we extended the hierarchical regression approach 
to include additional coefficients that were capable of explaining 
the differences between the two experiments and fit this extended 
model to the combined data. As expected, this model provided evi-
dence for a memory advantage in play trials, and an amplification 
of this advantage for trials with a high image RPE (Supplementary 
Fig. 7, Supplementary Table 1). In the combined dataset there was 
also a positive effect of the interaction between value and prob-
ability (Supplementary Fig. 7; mean (95% CI) probability × value 
coefficient = 0.02 (0.004–0.04); Supplementary Table 1), such that 
the positive impact of reward probability on memory was largest 
on high-value trials, supporting our initial observation in experi-
ment 1. This finding is predicted by the RPE account, as the high 
reward probability category elicits a greater RPE when the potential 
payout is higher (‘I could win 100 points, and now I almost certainly 
will’) as opposed to when the potential payout is low (‘I could win 
1 point, and now I almost certainly will’). We also observed that 
the reward probability effect was greater in the no delay condition 
(Supplementary Fig. 7; mean (95% CI) probability delay difference 
coefficient = −0.03 (−0.05 to −0.002); Supplementary Table 1), with 
no evidence for any memory effects being stronger in the 24 h delay 
condition (Supplementary Table 1; all other delay difference P val-
ues were >0.19).

Using a similar approach, we also tested whether there was a neg-
ative effect of trial value on memory, which was weakly suggested by 
the results of experiment 1. However, using the combined dataset, we 
found no effect of trial value on memory (Supplementary Table 1).

Discussion
An extensive previous literature has linked dopamine to RPEs elic-
ited during reinforcement learning5,6,22,24,29,40,57–59, and a much smaller 
body of work has suggested that dopamine can also influence the 
encoding and consolidation of episodic memories by modulating 
activity in the medial temporal lobes21,42,60. Evidence for the relation-
ship between RPE signalling and memory encoding has so far been 
mixed. Here, we used a two-stage learning and memory paradigm, 
along with computational modelling, to better characterize how 
RPE signals affect the strength of incidental memory formation.
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We found that memory encoding was stronger for trials that 
involved positive image RPEs (Fig. 4a). This effect was only evident 
for trials in which participants accepted the risky offer, which is to 
say, trials in which the subjective prediction error could have plau-
sibly been greater than zero. The effect was evident after controlling 
for other potential confounds (Fig. 6b, column 3) and it was ampli-
fied for trials in which higher reward values were on the line (Fig. 
6b, column 5). The data also suggest that the effect may depend on 
the timing of the RPE; memory was enhanced by positive image 
RPEs, but we found no evidence of an effect of positive value or 
feedback RPEs. These results are all consistent with a direct, posi-
tive effect of RPE at the time of stimulus presentation on memory 
encoding. This interpretation is bolstered by the fact that individu-
als who were more sensitive to value and probability in the learning 
task (that is to say, those participants who were most closely track-
ing probability and value through the learning task) showed greater 
positive effects of image RPEs on memory. Experiment 2 further 
supported the RPE interpretation by demonstrating that memory 
benefits were composed of equal and opposite contributions of the 
reward probability associated with the observed image category 
and that of the unobserved, counterfactual one (Figs. 7f and 8b). 
Together, these results provide strong evidence that RPEs enhance 
the incidental encoding of visual information, with positive conse-
quences for subsequent memory.

We also found that participants encoded memoranda to a greater 
degree during trials in which they selected a risky bet (Fig. 3). This 
finding is consistent with a positive relationship between RPE sig-
nalling and memory strength, in that participant behaviour provides 
a proxy for the subjective reward probability estimates (Fig. 2a).  
However, this effect was prominent in both experiments, even after 
controlling for model-based estimates of RPE (Figs. 6b and 8a). 
Therefore, although we suspect that this result may at least partially 
reflect the direct impact of RPE, it may also reflect other factors 
that are associated with risky decisions. During play trials, partic-
ipants view items while anticipating the uncertain gain or loss of 
points during the upcoming feedback presentation, whereas during 
pass trials participants know they will maintain their current score.  
A direct effect of perceived risk on memory encoding would be 

consistent with recent work that has highlighted enhanced memory 
encoding before uncertain feedback61, particularly when that feed-
back pertains to a self-initiated choice62.

One important question when interpreting these effects on 
memory encoding is to what degree they are mediated by shifts 
in anticipatory attention. Recent work by Stanek and colleagues61 
demonstrated that images presented before feedback in a Pavlovian 
conditioning task showed a consolidation-independent memory 
benefit when the feedback was uncertain. Although we did not 
observe a memory benefit when feedback was most uncertain (note 
the lack of enhanced memory for intermediate reward probabilities 
in Fig. 4c), it is possible that attention is modulated differently in our 
task, and that the memory benefits that we observed (for play trials 
and for trials that included a large image RPE) might reflect these 
differential fluctuations in anticipatory attention. We attempted to 
minimize the influence of attention by (1) forcing participants to 
categorize the image during each trial, thus ensuring some baseline 
level of attention to the memoranda and (2) by presenting counter-
factual information during pass trials that was nearly identical to 
the experienced outcome information. Indeed, we found that the 
best model of behaviour relied equally on feedback information 
from play or pass trials, and across all levels of image RPE (Fig. 2c), 
providing evidence that attention to feedback did not differ sub-
stantially across our task conditions.

A more nuanced analysis revealed that participants were slightly 
more influenced by outcome information provided during all play 
trials irrespective of image RPE. This suggests that anticipatory 
attention is elevated slightly for play versus pass conditions, but it 
does not imply a difference in attention during play trials with dif-
fering levels of image RPE (Supplementary Fig. 6b). Furthermore, 
there was no relationship between the degree to which participants 
modulated learning on the basis of gambling behaviour (play versus 
pass), and the degree to which they showed subsequent memory 
improvements during play trials (Supplementary Fig. 6c). Thus, 
although there seem to be small attentional shifts that relate to gam-
bling behaviour, the size of such shifts is not a good predictor of 
which participants will experience a subsequent memory benefit. 
However, although our analyses suggest that the memory benefit 
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conferred by positive image RPEs is not mediated by attention, we 
cannot completely rule out the possibility that attention may have 
fluctuated with RPEs in ways we could not measure. Future work 
using proxy measurements of attention (for example, eye tracking) 
could further address whether attention can be dissociated from 
RPEs, and if so, whether it modulates the relationship between RPE 
and memory.

At first glance, our results appear incompatible with those of 
Wimmer and colleagues45, who showed that stronger RPE encoding 
in the ventral striatum is associated with weaker encoding of inci-
dental information. We suspect that the discrepancy between these 
results is driven by differences in the degree to which memoranda 
are task relevant in the two paradigms. In our task, participants 
were required to encode the memoranda sufficiently to categorize 
them to perform the primary decision-making task, whereas in the 
Wimmer study, the memoranda were unrelated to the decision task 
and thus might not have been well-attended, particularly for trials 

in which the decision task elicited an RPE. Taken together, these 
results suggest that RPEs are most likely to enhance memory when 
they are elicited by the memoranda themselves, with the potential 
influence of secondary tasks eliminated or at least tightly controlled.

A relationship between RPEs and memory is consistent with a 
broad literature that highlights the effects of dopaminergic signal-
ling on hippocampal plasticity32,35,37 and memory formation42, as well 
as the studies that suggest that dopamine provides an RPE signal5,22 
through projections from the midbrain to the striatum. It is thought 
that this dopaminergic RPE is also sent to the hippocampus through 
direct projections20, although—to our knowledge—this has never 
been verified directly and should be a target of future research. Our 
results not only support the behavioural consequences that might 
be predicted to result from such mechanisms, but also refine them 
substantially. In particular, we show that the timing of RPE signal-
ling relative to the memorandum is key; we saw no effect of RPEs 
elicited by previous or subsequent feedback on memory (Fig. 5a), 
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were estimated. a, Example task structure and model predictions. In the new learning task, the true reward probabilities of the two categories were 
independent and were restricted to either 0.2 or 0.8. The task contained at least one block (constituting at least 20 trials) of the four possible reward 
probability combinations (0.2 and 0.2, 0.2 and 0.8, 0.8 and 0.2, or 0.8 and 0.8). b, Trial-by-trial reward probability, showing stretches of stable reward 
probability (0.2 and 0.2 or 0.8 and 0.8) or varying reward probability (0.2 and 0.8 or 0.8 and 0.2). c, The variability of image RPE, influenced by the reward 
probability conditions shown in b. d, Average d′ for both delay conditions (no delay, n = 93; 24 h delay, n = 81). e, Mean pairwise difference in memory 
score between the old images and semantically matched foil images (new). f,g, Interaction between image category and reward probability for the no 
delay (f) and 24 h delay (g) conditions. There is a positive association between recognition memory and the reward probability of the currently observed 
image category and a negative association between memory and the reward probability of the other, unobserved image category. Data are mean ± s.e.m. In 
d–g, colours indicate time between encoding and memory testing; blue, no delay; red, 24 h delay.
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despite strong evidence that this feedback was used to guide rein-
forcement learning and decision-making (Fig. 2). RPE-induced 
memory enhancement was selective to observed targets and did not 
generalize to semantically matched foils (Supplementary Fig. 5)—as 
would be expected for a hippocampal mechanism12—consistent with 
previous literature on the hippocampal dependence of recognition 
memory63,64. However, other aspects of our results—such as the lack 
of consolidation dependence (Fig. 6b)—deviate from previous lit-
erature on dopamine-mediated memory enhancement in the hippo-
campus42, raising questions regarding whether our observed memory 
enhancement might be mediated through an alternative dopamine 
signalling pathway such as pathways that target the striatum65 or the 
prefrontal cortex19,43,66. We hope that our behavioural study inspires 
future work to address these anatomical questions directly.

Although our results are consistent with some recent work that 
relates positive RPEs to better incidental61 and intentional47 mem-
ory encoding, they differ from previous work in that image RPE 
effects emerged immediately and were not strengthened by a 24 h 
delay (Figs. 4 and 6, Supplementary Tables 1 and 2). Previous work 
from Stanek and colleagues61 showed that memory encoding ben-
efits that are bestowed by positive RPEs required a substantial delay 
period for consolidation, consistent with studies that use rodents 
that show the mechanisms by which dopamine can enhance hippo-
campal memory encoding in a consolidation-dependent manner42. 
However, it is unclear to what extent we should expect generaliza-
tion of these results to our study, given the differences in experimen-
tal paradigm, timescale, memory demands and species. The Stanek 
paradigm differed from ours in the timing and duration of image 
presentation, the relevance of the memoranda to task performance 
and the nature of the task itself (our RPEs were elicited in a choice 
task, whereas theirs were elicited through a Pavlovian paradigm)61. 
Indeed, our results suggest that the timing of the RPE relative to 
image presentation is an important determinant of memory effects; 
we demonstrate that the RPE elicited at the value time point 2.5 s 
before image presentation (Fig. 1, pink) had no appreciable effect 

on subsequent memory (Fig. 4e). The RPE-inducing stimulus in 
the Stanek paradigm was presented 1.4 s before the memorandum, 
which is intermediate in timing between our image RPE (synchro-
nous with memorandum) and our value RPE (preceding memo-
randum). At the psychological level, it is clear that these timing 
differences are important, and it is possible that the strength of the 
encoding benefit—and even the consolidation dependence—may 
be sensitive to these small differences in relative timing. It should 
also be noted that the RPEs elicited at different times in our task 
occurred through the presentation of different types of information 
(for example, reward magnitude, reward probability and actual out-
come) and thus our claims about timing assume that these distinct 
RPEs are conveyed in a common currency.

At the level of biological implementation, the consequence of 
differences in timing may be enhanced by differences in dopamine 
signalling in operant versus Pavlovian paradigms, with the former 
eliciting dopamine ramps that grow as an outcome becomes nearer 
in time67, and the latter eliciting the opposite trend in the firing of 
dopamine neurons68. Thus, it is possible that our positive prediction 
error conditions elicit both a phasic dopamine burst and a ramp 
of dopamine as the outcome approaches, whereas the Stanek para-
digm elicits a short phasic burst followed by a decrease in baseline 
dopamine61. This signalling difference could be magnified by the 
differences in our presentation times; our image was present over 
the duration of the dopamine ramp, whereas the Stanek paradigm 
more precisely sampled the period during which a phasic spike in 
dopamine would be expected. Although it is clear that patterns of 
dopamine signalling differ across these task designs, it is not clear 
whether such differences are effectively communicated to the hip-
pocampus or whether they could alter the consolidation depen-
dence of dopamine-induced memory encoding benefits. Future 
work should carefully examine the effects of relative timing and 
task design on the magnitude and consolidation dependence of RPE 
benefits to human memory encoding. We hope that the emergence 
of these timing and task dependencies from human studies inspires 
parallel studies in rodents to characterize the precise temporal 
dynamics through which dopamine signals can and do facilitate 
memory formation, and the degree to which these dynamics affect 
underlying mechanisms, in particular the role of consolidation.

Our results also provide insights into apparent inconsisten-
cies in previous studies that have attempted to link RPE signals to 
memory encoding. Consistent with previous work65, our results 
emphasize the importance of choice in the degree to which image 
RPEs contributed to memorability. Indeed, for trials in which the 
participants passively observed outcomes, we saw no relationship 
between model-derived RPE estimates and subsequent memory 
strength (Fig. 4a, dotted lines). This may help to explain the lack 
of a signed relationship between RPEs and subsequent memory 
strength in a recent study by Rouhani and colleagues, which lever-
aged a Pavlovian design that did not require explicit choices to be 
made46. In contrast to our results, Rouhani and colleagues observed 
a positive effect of absolute RPE, similar to our model-based sur-
prise estimates, on subsequent memory. Although we saw no effect 
of surprise on subsequent memory, other work has highlighted a 
role for such signals in the enhancement of hippocampal activa-
tion and memory encoding69,70. One potential explanation for this 
discrepancy is in the timing of image presentation. Our study pre-
sented images briefly during the choice phase of the decision task. 
By contrast, Rouhani and colleagues presented the memoranda for 
an extended period that encompassed the epoch containing trial 
feedback, potentially explaining why they observed effects related to 
outcome surprise46. More generally, the temporally selective effects 
of RPE observed here suggest that RPE effects may differ consid-
erably from other manipulations across longer timescales that are 
thought to enhance memory consolidation through dopaminergic 
mechanisms21,33,43,44.

–0.1 0 0.1
Play or pass

–0.1 0 0.1
–0.1

0

0.1

O
bs

er
ve

d 
im

ag
e 

pr
ob

ab
ili

ty
po

st
er

io
r 

de
ns

ity
Unobserved image probability

posterior density

P
os

te
rio

r 
de

ns
ity

a b

Fig. 8 | Hierarchical modelling results from experiment 2. a,b, 
Memory scores depend on participant gambling behaviour and on the 
probabilities associated with both image categories. Memory score data 
from experiment 2 were fit with a version of the hierarchical regression 
model described in Fig. 6a to replicate previous findings and determine 
whether reward probability effects were attributable to both observed 
and unobserved category probabilities; n = 174. a, Posterior probability 
estimates of the mean play or pass coefficient. The posterior estimates 
were greater than zero and consistent with those measured in experiment 
1. b, Image category probability (observed) coefficients, plotted against 
other category probability (unobserved) coefficients, reveal that 
participants tended to have higher memory scores for images that were 
associated with high reward probabilities (upward shift of the density 
relative to zero) and when the unobserved image category was associated 
with a low reward probability (leftward shift of the density relative to zero).
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In summary, our results demonstrate a role for image RPEs in 
enhancing memory encoding. We show that this role is temporally 
and computationally precise, independent of consolidation dura-
tion (at least in the current paradigm), and contingent on decision-
making behaviour. These data should help to clarify inconsistencies 
in the literature regarding the relationship between reward learning 
and memory. The detailed predictions we have made using these 
data could be tested in future studies exploring the relationship 
between dopamine signalling and memory formation.

Methods
Experiment 1. Experimental procedure. The task consisted of two parts—the 
learning task and the memory task. The learning task was a reinforcement learning 
task with random change points in reward contingencies of the targets. The 
memory task was a surprise recognition memory task using image stimuli that 
were presented during the learning task and foils.

Participants completed either the no delay or 24 h delay versions of the task 
using Amazon Mechanical Turk. For the no delay condition, the memory task 
followed the learning task after only a short break, during which a demographic 
survey was given. The entire task was therefore performed in one sitting. For the 
24 h delay condition, participants returned 20–30 h after completing the learning 
task to do the memory task.

One task for each specific condition (no delay or 24 h delay) was administered 
at a time, and participants who agreed to complete the task online at the time of 
administration were recruited for that task condition. Data collection—but not the 
analysis—was performed blind to the conditions of the experiments.

Participants. A total of 287 participants (142 for the no delay condition; 145 for 
the 24 h delay condition) completed the task using the Amazon Mechanical Turk 
website. Target sample sizes were chosen on the basis of the results of an initial 
pilot study that used a similar design and was administered to a similar online 
target population. Randomization across conditions was determined by the day 
that participants accepted to complete the human intelligence task that was posted 
on Amazon Mechanical Turk. Neither participants nor experimenters were blind to 
the delay condition. From the total participant pool, 88 participants (33, no delay; 
55, 24 h delay) were excluded from analysis because they previously completed an 
older version of the task or did not meet our criteria of above-chance performance 
in the learning task. To determine whether a participant’s performance was above 
chance, we simulated random choices using the same learning task structure, then 
computed the total score achieved by the random performance simulation. We 
then repeated such simulations 5,000 times and assessed whether the participant’s 
score was greater than 5% of the score distribution from the simulations. The final 
sample had a total of 199 participants (109 for the no delay condition; 90 for the 
24 h delay condition; 101 males, 98 females) with an average age of 32.2 ± 8.5 yr 
(mean ± s.d.). Informed consent was obtained in a manner approved by the Brown 
University Institutional Review Board.

Learning task. The learning task consisted of 160 trials and each trial consisted of 
three phases—value, image and feedback (Fig. 1a). During the value phase, the 
amount of reward associated with the current trial was presented in the middle 
of the screen for 2 s. This value was equally sampled from [1, 5, 10, 20, 100]. After 
an interstimulus interval (ISI) of 0.5 s, an image appeared in the middle of the 
screen for 3 s (image phase). During the image phase, the participant made one 
of two possible responses using the keyboard: play (press 1) or pass (press 0). 
When a response is made, a coloured box indicating the participant’s choice (for 
example, black indicates play and white indicates pass) appeared around the image. 
The pairing of box colour with the participant choice was pseudorandomized 
across participants. This image phase was followed by an ISI of 0.5 s, after which 
the feedback of the trial was shown (feedback phase). The order of images was 
pseudorandomized.

Each trial had an assigned reward probability, such that if the participant 
chose play, they would be rewarded according to that probability. If the participant 
chose play and the trial was rewarding, they were rewarded by the amount shown 
during the value phase (Fig. 1a). If the participant chose play but the trial was 
not rewarding, they lost 10 points regardless of the value of the trial. If the choice 
was pass, the participant neither earned nor lost points (+0), and was shown the 
hypothetical result of choosing play (Fig. 1a). During the feedback phase, the 
reward feedback (+value, −10 or hypothetical result) was shown for 1.5 s, followed 
by an ISI (0.5 s) and a 1 s presentation of the participant’s total accumulated score.

All image stimuli belonged to one of two categories: animate (for example, 
whale or camel) or inanimate (for example, desk or shoe). Each image belonged 
to a unique exemplar such that there were no two images of the same animal or 
object. Images of the two categories had reward probabilities that were oppositely 
yoked. For example, if the animate category has a reward probability of 90%, the 
inanimate category had a reward probability of 10%. Therefore, participants only 
had to learn the probability for one category, and simply assume the opposite 
probability for the other category.

The reward probability for a given image category remained stable until a 
change point occurred, after which it changed to a random value between 0 and 
1 (Fig. 1d). Change points occurred with a probability 0.16 for each trial. To 
facilitate learning, change points did not occur in the first 20 trials of the task 
and the first 15 trials following a change point. Each participant  
completed a unique task with a pseudorandomized order of images that followed 
these constraints.

The objective was to maximize the total number of points earned. 
Participants were advised to pay close attention to the value, probability and 
category of each trial to decide whether it is better to play or pass. Participants 
were thoroughly informed about the possibility of change points, and that the 
two categories were oppositely yoked. The participants underwent a practice 
learning task in which the reward probabilities for the two categories were 1 and 
0 to clearly demonstrate these features of the task. Participants were awarded a 
bonus compensation proportional to the total points earned during the learning 
and memory tasks.

Computing the image RPE. The image RPE arises from the fact that the reward 
probabilities associated with the two image categories (animate or inanimate) 
differ. For instance, consider a trial in which the trial value was 100, the animate 
category was associated with a reward probability of 0.9, and an animate image was 
presented. The expected reward for that trial could be computed as follows:

= × ∣ − × − ∣

= × . − × . =

P Pexpected reward value (rew animate) 10 (1 (rew animate))

100 0 9 10 0 1 89

By contrast, if the other (inanimate) category had been presented, the expected 
reward would be as follows:

= × ∣ − × − ∣

= × . − × . =

P Pexpected reward value (rew inanimate) 10 (1 (rew inanimate))

100 0 1 10 0 9 1

We assume that participant reward expectations before observing the 
image category simply average across these two categories. Thus, in this 
case, the expectation before observing the animate image would have been 
(89 × 0.5 + 1 × 0.5) = 45. The image RPE was computed by subtracting the expected 
reward after the image category was revealed from the expected reward before it 
was revealed, in this case 89 − 45 = 44.

Memory task. During the memory task, participants viewed 160 old images from 
the learning task that were intermixed with 160 new images (Fig. 1i). Importantly, 
we ensured that the new images were semantically matched to the old images. 
All 160 images in the learning task were those of unique exemplars, and the 160 
new images were different images of the same exemplars. Therefore, accurate 
responding depended on the retrieval of detailed perceptual information from 
encoding (for example, ‘I remember seeing this desk’, instead of ‘I remember  
seeing a desk’).

The order of old and new images was pseudorandomized. For each trial, a 
single image was presented, and the participant selected between old and new by 
pressing 1 or 0 on the keyboard, respectively (Fig. 1i). Afterwards, they were asked 
to rate their confidence in the choice from 1 (a guess) to 4 (completely certain). 
The participants were not provided with feedback on whether their choices were 
correct or incorrect.

Bayesian ideal observer model. The ideal observer model computed inferences 
over the probability of a binary outcome that evolved according to a change-point 
process. The model was given information about the true probability of a change 
point occurring for each trial (H; hazard rate) by dividing the number of change 
points by the total number of trials for each participant. For each trial, a change 
point was sampled according to a Bernoulli distribution using the true hazard rate 
(CP ≈ B(H)). If a change point did not occur (CP = 0), the predicted reward rate 
(μt) was updated from the previous trial (μt − 1). When a change point did occur 
(CP = 1), μt was sampled from a uniform distribution between 0 and 1. Given the 
previous outcomes, the posterior probability of the reward rate of each trial can be 
formulated as follows:

∑ ∑μ μ μ μ μ∣ ∝ ∣ ∣ ∣
μ

− − −

−

P X P X P P P X P X( ) ( ) ( CP, ) (CP) ( ) ( ) (1)t t t t t t t t t t t1:
CP

1 1 1: 1: 1
t t 1

where μ∣P X( )t t  is the likelihood of the outcomes given the predicted reward rate, 
μ μ∣ −P ( CP, )t t t 1  represents the process of accounting for a possible change point 

(when CP = 1, μt ~ U(0,1), where U refers to the fact that the new mean (μt) is 
drawn from a uniform distribution with parameters 0 and 1; more simply, it is set 
to a random number sampled on the continuous range from 0 to 1), P(CPt) is the 
hazard rate and μ ∣−P X( )t t1 1:  is the prior belief of the reward rate.

Using the model-derived reward rate, we quantified the extent to which  
each new outcome influenced the subsequent prediction as the learning rate in a 
delta-rule:
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α δ
δ

= +
= −
+B B

X B (2)t t t t

t t t

1

where B is the belief about the current reward rate, α is the learning rate and δ is the 
prediction error, defined as the difference between the observed (X) and predicted 
(B) outcome. By rearranging, we were able to compute the trial by trial learning rate 
(Supplementary Fig. 8):

α =
−

−
+B B

X B
(3)t t

t t

1

The trial-by-trial modulation of change-point probability (that is, surprise) was 
calculated by marginalizing over μt, which is a measure of how likely it is—given 
the current observation—that a change point has occurred (Supplementary Fig. 8):

∑ ∑μ μ μ μ∣ ∝ ∣ ∣ ∣
μ μ

− − −

−

P X P X P P P X P X(CP ) ( ) ( CP, ) (CP) ( ) ( ) (4)t t t t t t t t t t t1: 1 1 1: 1: 1

t t 1

Uncertainty was determined by computing the entropy of the posterior 
probability distribution of the reward rate for each trial, measured in units of nats 
(Supplementary Fig. 8):

∑ μ μ= − ∣ ∣H t P X P X( ) ( )ln( ( )) (5)t t t t1: 1:

Descriptive analysis. Memory scores for each image were computed by 
transforming the recognition and confidence reports provided by the participant. 
During each trial of the recognition memory task, participants first chose between 
old and new, then reported their confidence in that choice on a scale of 1 to 4. We 
converted these responses so that choosing old with the highest confidence (4) 
was scored as 8, whereas choosing new with the highest confidence was scored as 
1. Similarly, choosing old with the lowest confidence (1) was scored as 5, whereas 
choosing new with the lowest confidence was scored as 4. As such, memory scores 
reflected a confidence-weighted measure of memory strength ranging from 1 to 8. 
These memory scores were used for all analyses that involved recognition memory.

For some statistical tests and plots (Figs. 4, 5 and 7f), memory scores for target 
items were mean-centred per participant by subtracting out the average memory 
score across only the target items. Statistical analyses were then performed in a 
between-participant manner to assess the degree to which certain task variables 
affected mean-centred memory scores.

The relationships between computational factors and memory scores were 
assessed by estimating the slope of the relationship between each computational 
factor and the subsequent memory score separately for each computational 
variable and participant. Statistical testing was performed using one-sample t-tests 
on the regression coefficients across participants (for overall effects) and two-
sample t-tests for differences between delay conditions (for delay effects).

When reward probability was included in a statistical analysis, we used the 
reward probabilities estimated by the Bayesian ideal observer model described 
above, as these subjective estimates of the reward rate departed substantially  
from ground-truth probabilities after change points and were more closely  
related to behaviour.

To generate the descriptive figures, we performed a binning procedure for each 
participant to ensure that each point on the x axis contained an equal number of 
elements. For each participant, we divided the y variable in question into quantiles 
and used the mean y value of each quantile as the binned value. To plot data from 
all participants on the same x axis, we first determined the median x value for 
each bin per participant, then took the average of the bin median values across 
participants. For figures that contain more than one plot, we shifted the x values of 
each plot slightly off-centre to avoid overlap of points (Figs. 5 and 7f).

We were interested in testing whether participants who were sensitive to reward 
value and probability also had a strong image RPE on memory effect. In other 
words, participants who better adjusted their behaviour using information about 
the trial value and probability will be more likely to remember items associated 
with higher RPEs. To quantify sensitivity to reward value and probability, we fit a 
logistic regression model to play or pass behaviour that included z-scored versions 
of the reward probability (derived from the ideal observer model) and reward value 
as predictors for each participant. To find the effect of image RPE on memory, we 
fit a linear regression model on mean-centred memory score that included the 
image RPE as the predictor. We then computed the Spearman correlation between 
the coefficients of the two regression models.

Unless otherwise specified, statistical comparisons in the manuscript used a 
two-tailed t-test. Data distribution was assumed to be normal, but this was not 
formally tested. We used an α = 0.05 for all statistical tests.

Reinforcement learning model fitting. We fit a reinforcement learning model directly 
to the participant behaviour using a constrained search algorithm (fmincon in 
MATLAB 2016a), which computed a set of parameters that maximized the total 

log posterior probability of betting behaviour (Fig. 2c). Four such parameters were 
included in the model: (1) a temperature parameter of the softmax function used 
to convert trial expected values to action probabilities, (2) a value exponent term 
that scales the relative importance of the trial value in making choices, (3) a play 
bias term that indicates a tendency to attribute higher value to gambling behaviour 
and (4) an intercept term for the effect of learning rate on choice behaviour. In 
fitting the model, we wanted to account for the fact that there may be individual 
differences in how a participant’s betting behaviour is biased by certain aspects 
of the task. For instance, some participants may be more sensitive to trial value, 
whereas others may attribute higher value to trials in which they gambled. This was 
the rationale behind adding the second and third parameters. The overall ‘biased’ 
value that was estimated from gambling on a given trial was given by:

= + × + − × −V t B P V P( ) ( (1 ) ( 10) )B t
k k

play rew rew

Where Bplay is the play bias term, Vt is the trial value (provided during the value 
phase) and k is the value exponent. This overall value term was converted into 
action probabilities ∣ ∣P V t P V t( (play ( )), (pass ( )))  using a softmax function. This 
was our base model.

Next, we fit additional reinforcement learning models to the data by adding 
parameters to the base model described above. These additional parameters 
controlled the extent to which other task variables affected the trial-to-trial 
modulation of learning rate, including surprise, uncertainty, the learning rate 
computed from the ideal observer model and betting behaviour. Specifically, 
the learning rate was determined by a logistic function of a weighted predictor 
matrix that included the above variables and an intercept term. Therefore, the 
model captured the degree to which the learning rate changed as a function of 
these variables. The best-fitting model was determined by computing the Bayesian 
information criterion for each model, then comparing these values to that of the 
base model71.

To compare participant behaviour to model-predicted behaviour, we simulated 
choice behaviour using the model with the lowest Bayesian information criterion, 
which incorporated surprise and uncertainty variables in determining learning rate 
(Fig. 2b). For each trial, we used the expected trial value (V(t)) computed above, 
and the parameter estimates of the temperature variable as inputs to a softmax 
function to generate choices.

Hierarchical regression model. Participant memory scores were modelled using 
a hierarchical mixture model that assumed that the memory score reported 
for each item and participant would reflect a linear combination of participant 
level predictors and item level memorability (Fig. 6a). The hierarchical model 
was specified in STAN using the matlabSTAN interface (http://mc-stan.org)72. 
In brief, memory scores for each trial were assumed to be normally distributed 
with a variance that was fixed across all trials for a given participant. The mean 
of the memory score distribution for a given trial depended on trial-to-trial task 
predictors that were weighted according to coefficients estimated at the participant 
level and item-to-item predictors that were weighted by coefficients that were 
estimated across all participants. Participant coefficients for each trial-to-trial task 
predictor were assumed to be drawn from a group distribution with a mean and 
variance offset by a delay variable, which allowed the model to capture differences 
in coefficient values for the two different delay conditions. All model coefficients 
were assumed to be drawn from prior distributions; for all coefficients other than 
the intercept (which captured overall memory scores); prior distributions were 
centred on zero.

Experiment 2. Experimental procedure. In experiment 2, the learning task was 
modified to dissociate reward rate from RPE. The reward probability of the two 
image categories (animate versus inanimate) were independent and set to either 
0.8 or 0.2, allowing for a 2 × 2 design (0.8/0.8, 0.8/0.2, 0.2/0.8 or 0.2/0.2; Fig. 7a). 
Change points occurred with a probability 0.05 on every trial for the two categories 
independently. Change points did not occur during the first 20 trials of the task 
or the first 20 trials following a change point. Tasks were generated to contain at 
least one block of each trial type in the 2 × 2 design. Each participant completed 
a unique task with a pseudorandomized order of images that followed these 
constraints. The task instructions explicitly stated that the two image categories had 
independent reward probabilities that needed to be tracked separately. Importantly, 
participants were also unaware that the probabilities were either 0.2 or 0.8, and 
most likely assumed that the probabilities could be set to any value ranging from 
0 to 1. The rest of the task—including the recognition memory portion—was 
identical to that of experiment 1.

Participants. A total of 279 participants (157 for the no delay condition; 122 
for the 24 h delay condition) completed the task on Amazon Mechanical Turk. 
In total, 105 participants (64 for the no delay condition; 41 for the 24 h delay 
condition) were excluded from analysis because they previously completed an 
older version of the task or did not meet our criteria of above-chance performance 
in the learning task. The criteria for above-change performance was identical to 
those of experiment 1. Participants who completed experiment 1 or any previous 
versions of the task were identified and excluded using the participant-unique 
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identifier that is provided by Amazon Mechanical Turk, to ensure that participants 
were unaware of the surprise memory portion of the task. The final sample had 
a total of 174 participants (93 for the no delay condition and 81 for the 24 h delay 
condition; 101 males, 71 females, 2 no response) with an average age of 34.0 ± 9.1 
(mean ± s.d.). Informed consent was obtained in a manner approved by the Brown 
University Institutional Review Board.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The behavioural data from both experiments are available from the corresponding 
author on request.

Code availability
Custom code used to analyse and model the data is available from the 
corresponding author on request.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Data was collected through Amazon Mechanical Turk (MTurk). We used the psiTurk Toolbox (https://psiturk.org/) to maintain the web 
server and manage the database for the experiments. We customized the JavaScript template code from the jsPsych library (https://
www.jspsych.org/) to run our behavioral experiments.

Data analysis All analyses were performed using custom MATLAB scripts.  
Hierarchical regression model was fit using STAN for MCMC sampling and matlabSTAN to interface with matlab. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data from both experiments and the scripts used to analyze and model the data are available from the authors upon request. 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study involved quantitative measurements of decision making and learning behavior along with quantitative measurements of 
incidental memories formed about images presented in the learning and decision making task, which were collected either immediately 
(no delay) or 24 hours after completion of the initial task (24hr delay). 

Research sample Users of Amazon Mechanical Turk (MTurk) that had IP addresses in the United States of America and had to have 95% of their previous 
HITs approved. Previous work has indicated that mechanical turk samples are not representative of the population as a whole, but that 
results from mechanical turk cognitive science studies replicate those performed in the laboratory, which typically rely on undergraduate 
participants. Here we opted to use MTurk in order to ensure sufficient power to test our hypotheses given that we expected our 
measurements of trial-to-trial memory reports to contain substantial variability.

Sampling strategy Our experiment, along with a brief advertisement describing it, was posted as a HIT (human intelligence task). We excluded MTurk users 
that were outside of the country. Assignment to conditions was determined according to the day that a user accepted the HIT and 
experimenters were blind the specific users that were present on the days in which HITs were posted. Explicit power analyses were not 
performed before data collection. Sample sizes were based on other recognition memory studies and MTurk studies and are in line with 
similar recognition memory experiments that have relied on MTurk for data collection (eg. Rouhani, Norman & Niv, 2018).

Data collection Data was collected on personal computers (not tablets or phones) of the participants through a web-based video game interface. 
Experimenters did not interact with participants during data collection and thus any person that was present at the time of data 
collection was blind to the experimental condition and the study hypothesis. 

Timing Experiment 1 was conducted between May and December, 2015. 
Experiment 2 was conducted in April and May, 2016

Data exclusions In Experiment 1, 88 out of 287 subjects were excluded. In Experiment 2, 105 out of 279 subjects were excluded. In both cases, subjects 
were excluded if they have completed any prior version of our tasks, so that they are not aware of the surprise recognition memory 
portion of the task. Subjects were also excluded if their performance on the learning task was not significantly better than simulated 
random behavior to ensure that subjects were actively engaged in the task. Both exclusion criteria were determined prior to data 
analysis. 

Non-participation Subjects had the option to participate in the study after reading the online advertisement, which provided a general explanation of the 
task. Subjects were also free to quit at any point during the task. However, we do not have data on how many subjects have declined to 
participate or quit after starting the task.

Randomization Experimental tasks in both delay conditions (no delay or 24 hour delay) were available at a first-come first-served basis, at varying times 
during the day and week. 
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Experiment 1: 199 subjects (101 males, 98 females; aged 32.2 ± 8.5 (mean ± SD)). 
Experiment 2: 174 subjects (101 males, 71 females, 2 no response; aged 34.0 ± 9.1 (mean ± SD))

Recruitment Subjects were recruited via Amazon Mechanical Turk (MTurk). Subjects recruited through MTurk has genrally been reported to 
be diverse in demographics, and we are unaware of any self-selection bias that may affect the results from our behavioral task. 
See Mason & Suri, 2012 for a discussion on MTurk.  
 
Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior research methods, 44(1), 
1-23.
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