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ABSTRACT
BACKGROUND: Human learning unfolds under uncertainty. Uncertainty is heterogeneous with different forms
exerting distinct influences on learning. While one can be uncertain about what to do to maximize rewarding out-
comes, known as policy uncertainty, one can also be uncertain about general world knowledge, known as epistemic
uncertainty (EU). In complex and naturalistic environments such as the social world, adaptive learning may hinge on
striking a balance between attending to and resolving each type of uncertainty. Prior work illustrates that people with
anxiety—those with increased threat and uncertainty sensitivity—learn less from aversive outcomes, particularly as
outcomes become more uncertain. How does a learner adaptively trade-off between attending to these distinct
sources of uncertainty to successfully learn about their social environment?
METHODS:We developed a novel eye-tracking method to capture highly granular estimates of policy uncertainty and
EU based on gaze patterns and pupil diameter (a physiological estimate of arousal).
RESULTS: These empirically derived uncertainty measures revealed that humans (N = 94) flexibly switched between
resolving policy uncertainty and EU to adaptively learn about which individuals can be trusted and which should be
avoided. However, those with increased anxiety (n = 49) did not flexibly switch between resolving policy uncertainty
and EU and instead expressed less uncertainty overall.
CONCLUSIONS: Combining modeling and eye-tracking techniques, we show that altered learning in people with
anxiety emerged from an insensitivity to policy uncertainty and rigid choice policies, leading to maladaptive
behaviors with untrustworthy people.

https://doi.org/10.1016/j.bpsc.2024.07.015
Adaptive social functioning requires individuals to efficiently
resolve a multitude of uncertainty signals when interacting with
others, especially in repeated interactions in which our dynamics
with others are constantly evolving (1–5). Imagine, for instance,
deciding whether to have a cup of coffee with a friend whom you
recently had a disagreement with. In such scenarios, one may
focus on reducing policy uncertainty (6)—figuring out which set
of actions produce desirable outcomes (i.e., what should I do?).
You might weigh the relative costs and benefits of talking to your
friend: Would meeting for coffee allow both parties to settle their
disagreement, or conversely would interacting simply escalate
the conflict? To resolve policy uncertainty, one might rely on a
history of observed outcomes to reach a decision. One can also
focus on resolving epistemic uncertainty (EU) (7,8)—acquiring
detailed information about others for the sake of knowledge. For
example, a learner may also be motivated to gather additional
information about their friend, either directly or indirectly, to es-
timate the exact value (i.e., benefits) of meeting for coffee. While
this type of value-based knowledge can increase the precision of
one’s beliefs (8,9), acquiring detailed epistemic knowledge is
cognitively taxing (7,10) and may not always offer additional
benefit for optimizing outcomes (11).

While efficiently resolving each uncertainty signal provides
distinct advantages for learning, overreliance on one signal at
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the expense of another can maladaptively bias behavior. If we
focus too much on minimizing policy uncertainty, our behavior
might become too rigid, and we may not learn sufficient in-
formation that would allow us to generalize across contexts
(12,13). If we focus too much on reducing EU, we might end up
investing too many resources gathering irrelevant information,
which can ultimately slow learning (7,10). While it seems
people can strike a delicate balance between optimizing
rewarding outcomes and gathering additional knowledge when
the opportunity arises, it is unknown how humans effectively
manage such trade-offs.

Reinforcement learning (RL) frameworks elegantly illustrate
this learning dichotomy. While value-based (e.g., Q-learning)
models iteratively learn the expected values of each action
(14,15), a form of epistemic knowledge, policy-based models
(e.g., actor-critic) directly optimize choice policies that maxi-
mize rewards without explicitly learning the expected values
(15–19). Although both strategies facilitate learning, it is often
more expedient to directly optimize a policy by identifying the
best set of actions, given that value-based methods exhibit
slowed convergence to reliable expected values (12,20), and
yet solely relying on policy optimization can prevent people
from gathering value-based information that can be highly
useful if one suddenly needs to transfer knowledge to a novel
gical Psychiatry. Published by Elsevier Inc. All rights are reserved,
ose for text and data mining, AI training, and similar technologies.
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problem (12,13). The tension between policy optimization and
value-based learning is also observed in classic explore-
exploit trade-offs (10,21). Across species and circumstances,
agents are often confronted with the dilemma of repeating tried
and true choices or selecting a new option that could provide
useful information and potentially better outcomes.

Thus, despite the efficiency of policy optimization, humans
should also assign utility to epistemic knowledge (11,21–23)—
especially in the social world where epistemic information can
help learners distinguish between the value of others (4,24).

The distinct advantages associated with reducing policy
uncertainty and EU suggest adaptive behavior may indeed
emerge from a combination of policy optimization and value-
based learning strategies (25,26), yet how these strategies
are combined to guide learning remains largely unknown (27).
One way to effectively manage this inherent tension is by
dynamically orienting attention toward value- or policy-based
information as new task demands arise (28), such that infor-
mation sampling patterns might unveil how distinct uncertainty
signals are directly prioritized for learning (29–31).

In the current study, we tested the hypothesis that adaptive
social learning would be characterized by flexible and frequent
attention switching between policy and epistemic information
to regulate learning rates. In particular, we evaluated whether
people would first reduce policy uncertainty to improve task
performance and then flexibly switch to gathering value-based
information to further minimize EU. This requires tracking
subjective experiences of policy uncertainty and EU in real time
as people manage these competing demands. Prior work
suggests that eye movements can provide a reliable readout of
uncertainty (32,33), revealing what information is being atten-
ded to, i.e., expected values or information related to the
choice policy (34,35). Moreover, using gaze patterns to mea-
sure uncertainty offers the advantage of sidestepping issues
with existing measures (36,37) that constrain the granularity of
subjective uncertainty estimates to a single point estimate
(Likert scales) and thereby omit critical details about the degree
and type of uncertainty experienced. Given that fluctuations in
uncertainty are also accompanied by increased physiological
arousal (38–40), we can further index pupil-based arousal to
the rate of learning adjustment (41–44).

Finally, we also explored whether increased uncertainty
sensitivity disrupts one’s ability to leverage policy uncertainty
and EU to effectively guide learning. It is well known that in-
dividuals with increased trait anxiety experience increased
distress and intolerance toward uncertainty (45–49), and this
hypersensitivity may affect one’s ability to swiftly adjust
behavior in uncertain environments (42,50–52). Although prior
work hints that individuals with anxiety fail to expediently
adjust their behavior when policy uncertainty increases (52),
altered learning could potentially emerge because individuals
with anxiety invest disproportionate cognitive resources
gathering social knowledge. Given that the coupling between
uncertainty and physiological arousal is blunted in people with
increased anxiety (42), we can additionally leverage gaze pat-
terns and pupillometry to directly test whether failures in
tracking policy uncertainty or EU impinge on learning.

In the current research, we constructed empirically derived
estimates of policy uncertainty and EU from gaze patterns,
allowing us to examine how individuals direct their attention
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toward policy uncertainty and EU signals as social interactions
unfold. To dissociate between policy uncertainty and EU, we
implemented a novel eye-tracking procedure in which partici-
pants indicated trial-level predictions about another’s trust-
worthiness using their eye gaze. We found that task
performance was predicted by how quickly an individual first
resolved policy uncertainty and was then able to flexibly switch
to resolving residual value-based EU. Adaptive switching was
yoked to how much a partner’s behavior changed during the
task (i.e., becoming increasingly untrustworthy) and was re-
flected in pupil-based arousal. However, the behavioral and
physiological fingerprint of flexibly switching between resolving
different types of uncertainties was altered in highly anxious
individuals. We fit a Bayesian RL (BRL) model that further
revealed that people with increased anxiety were slower to
adjust their behavior as partners became increasingly un-
trustworthy because of a tendency to perseverate on reward
history, even when learned values no longer reflected the
statistics of the environment. We found that reduced behav-
ioral adjustment to untrustworthy partners was related to
optimistic beliefs that partners would return a greater sum of
the investment. Finally, when partners were untrustworthy,
highly anxious individuals expressed less policy uncertainty, as
assessed via both gaze- and model-derived measures.

METHODS AND MATERIALS

Participants

Participants (N = 100, nfemale = 47, nmale = 53, mean age =
20.41 years) were recruited from the subject research pool
managed by the Department of Cognitive and Psychological
Sciences at Brown University in Providence, Rhode Island. All
participants received either monetary compensation ($15/hour)
or course credit, including additional performance-based
bonus payment of up to $20. Six participants were excluded
from final analyses because they did not adequately perform
the task (i.e., no behavioral variability in the choice data) or due
to poor gaze and pupil readout from the eye tracker, resulting
in a final sample of 94 participants.

Evaluating Anxiety

Participants were grouped as a function of low and high anx-
iety levels based on their responses from the Generalized
Anxiety Disorder (GAD-7) scale and the State-Trait Anxiety
Inventory (STAI) (see the Supplement for distribution of anxiety
scores). Our low- and high-anxiety groups were based on
established clinical guidelines, in which a score of 101 on the
GAD-7 scale (53,54) and a score of 401 on the trait component
of the STAI scale (55) are reliable predictors of pathological
anxiety (i.e., disruptive to one’s daily functioning and well-
being). For our statistical analyses of group differences, par-
ticipants were placed in the high-anxiety group if they were
above the significance cutoff on one or both anxiety in-
ventories and in the low-anxiety group if they were below the
cutoff on both the GAD-7 and STAI scales (see the Supplement
for behavioral analyses using continuous anxiety scores).
Based on these criteria, our sample was split into roughly
evenly sized high- and low-anxiety groups (nlow anxiety = 45,
nhigh anxiety = 49). Of note, assessed anxiety levels in our study
024; -:-–- www.sobp.org/BPCNNI
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did not evaluate whether participants met the criteria for a
DSM-5 generalized anxiety disorder.
Task Design

Participants completed 96 trials of the dynamic trust game
based on the task design developed in our prior work (52) and
interacted with 3 distinct partners that varied in their trust-
worthiness. Unbeknownst to participants, their partners were
preprogrammed, slowly drifting in their reward rate over the
course of the task, thereby requiring participants to continually
adjust their choice policy to optimize rewards, the amount of
Figure 1. Experimental design and eye-tracking method to empirically estima
paired with 1 of 3 presumed online partners and could invest $1 or $10. The in
quadrupled sum. Partners then decided to return anywhere from 0% to 50% of the
return), double their investment (50% return), or receive any outcome in between.
and drifted toward increasingly fair (trustworthy) or selfish (untrustworthy) strategi
black line denotes the outcome boundary determining the optimal policy to maxim
more than 25% and minimally ($1) otherwise to avoid a monetary loss. (C) Task tri
outcome boundary, requiring an adjustment in one’s current choice policy. In c
current choice policy with no consequence to their current payoffs (assuming cho
effects of each type of uncertainty and outcome valence on learning. (D) Task ev
computer selected a partner for the current round (see Methods and Materials). P
then made a prediction about how much money they believed their partner would
collected during the prediction phase, and pupil-linked arousal was measured du
patterns. During the prediction phase, participants were instructed to align their ey
gaze pattern over values was used to construct estimates of policy uncertainty an
spanned both sides of the boundary determining the optimal policy, quantified b
variance in gaze patterns irrespective of the outcome boundary. RT, response ti
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money a partner reciprocated back to the participant
(Figure 1A, B; see the Supplement for details). The task con-
sisted of 2 distinct trial types that influenced which type of
uncertainty should be more salient at a particular moment.
Adjust policy trials occur when the amount of money returned
by the partner has just crossed the outcome boundary
(Figure 1C). On these trials, one’s prior choice policy no longer
maximizes their earnings, which naturally increases policy
uncertainty until the policy is revised. In contrast, exploit policy
trials comprise trials where we expect learning to have stabi-
lized (i.e., at the end of a window in which partners were
consistently trustworthy or untrustworthy). In these time
te uncertainty. (A) Trust game. At the start of each trial, participants were
vested money was then quadrupled in value, and the partner received the
investment such that participants could lose all of the initial investment (0%

(B) Partner payout structure. Social partners gradually reversed their payouts
es, requiring participants to continually adjust their choice policy. The dotted
ize returns: participants should invest maximally ($10) when partners return

al types. During adjust policy trials, the partner’s return rate crossed the 25%
ontrast, during exploit policy trials, participants could continue using their
ice was already optimized). Trial types were orthogonalized to dissociate the
ent sequence. Trials commenced with a partner pairing phase in which the
articipants were then given up to 4 seconds to indicate their investment and
return, before observing trial outcomes. Gaze measures of uncertainty were
ring the feedback phase. (E) Measuring policy uncertainty and EU from gaze
e gaze (signaled to them with a blue dot) to the anticipated trial outcome. The
d EU. Policy uncertainty was assessed as the extent to which gaze patterns
y entropy (H-gaze) (see Methods and Materials). EU was quantified by the
me.
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windows, participants have generally learned the optimal
choice policy and can therefore use this opportunity to
resolve residual EU about partners. Critically, adjust and
exploit policy trials were crossed with reward and loss blocks
(i.e., when partners were trustworthy or untrustworthy,
respectively) to dissociate the effects of policy reliability and
outcome valence on behavior (see the Supplement for in-
depth task details).

Gaze Measures of Uncertainty

To obtain trial-level estimates of uncertainty, we asked par-
ticipants to predict their partner’s behavior (amount of money
reciprocated) before observing trial outcomes (Figure 1D).
Participants indicated their predictions using a response bar
that displayed all possible monetary returns given the amount
invested (Figure 1E). A blue dot on the screen corresponded to
the participant’s gaze, allowing participants to lock in their
predictions of how much money their partners would return by
moving the blue dot with their eyes to the predicted monetary
outcome. This enabled us to use gaze patterns to evaluate
participants’ trial-by-trial expectations and their experienced
uncertainty about anticipated outcomes, which is thought to
govern the rate of learning. Thus, by leveraging gaze patterns,
we derived distinct policy uncertainty and EU estimates.
Furthermore, if individuals flexibly switch between resolving
policy uncertainty and EU, then this attentional reorientation
should also be reflected in physiological correlates of arousal.
To quantify trial-level estimates of physiological arousal, we
measured the percent change in pupil diameter from baseline
at the time of feedback (Figure 1D; see Methods and
Materials).

To estimate policy uncertainty, we borrowed insights from
prior computational models that adjust learning as a function
of policy uncertainty, quantified by entropy (H), over choice
probabilities (6), which reliably captures human choice data in
the current task (52). We derived an analogous measure of
policy uncertainty based on gaze patterns, quantified by
computing the entropy of the proportion of gazes on either
side of the outcome boundary (H-gaze) (see the Supplement
for entropy computation details). The midpoint—which we
refer to as the outcome boundary—is not explicitly marked but
acts as a psychological boundary indexing whether partici-
pants expect to earn or lose money on the current trial, thus
determining whether they should invest or not (Figure 1E). An
increase in gaze fixations on both sides of the boundary in-
dicates greater uncertainty about the optimal choice policy and
should thus increase learning rates. However, even when one
might be relatively certain about what they should do in the
task (e.g., invest maximally or minimally), they may still expe-
rience residual uncertainty about the specific outcomes on a
given trial (i.e., exactly how much their partner will return),
motivating the pursuit of epistemic knowledge. EU about how
much money would be returned was quantified as the standard
deviation in gaze patterns over the range of outcomes (EU-
gaze), which captures the precision of one’s predictions. See
example mappings between gaze trajectories and uncertainty
estimates for a prototypical participant in Figure 2A. Eye-
tracking procedures and preprocessing steps are detailed in
the Supplement.
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RESULTS

People Dynamically Reoriented Their Attention
Toward Policy Uncertainty and EU Signals

Using our gaze-derived uncertainty measures, we examined
whether knowledge about the optimal policy (i.e., invest mini-
mally or maximally) captured the expression of distinct sources
of uncertainty. H-gaze was significantly greater on trials with
suboptimal investments (i.e., choices that were inconsistent
with the optimal choice policy) than optimal investments
(t =28.05, p, .001). In contrast, EU-gaze was greater on trials
in which participants selected the optimal response, sug-
gesting that participants instead expressed uncertainty about
exact monetary outcomes once they knew the optimal choice
policy (t = 7.07, p , .001) (Supplement; Figure S1). We next
tested whether the physiological expression of policy uncer-
tainty and EU depends on policy reliability (i.e., whether one
can exploit or must adjust their current policy) and the trust-
worthiness of their partner. We observed just this: Policy un-
certainty was greater during the adjust policy trials (main effect
of trial type: t = 4.47, p , .001), whereas EU was greater during
the exploit policy trials (main effect of trial type: t = 22.89, p ,

.001; uncertainty type3 trial type interaction t = 4.82, p, .001)
(Figure 2B, C). Moreover, participants expressed greater policy
uncertainty and EU when partners were untrustworthy (main
effect of outcome valence on H-gaze: t = 12.94, p , .001 and
EU-gaze: t = 8.44, p , .001), suggesting that participants
experienced more uncertainty about what to do when partners
were selfish, and were more motivated to gather precise
knowledge about untrustworthy people. In sum, although
expressed policy uncertainty and EU were correlated
(t = 30.29, p , .001), we also observed that policy uncertainty
and EU signals are dissociable when choice policies need to
be adjusted.

As an independent validation of the mappings between
our theoretically informed gaze metrics and task demands,
we evaluated the role of model-free gaze signatures that
were analogous to H-gaze and EU-gaze calculations. Using
the pattern of eye movements from the prediction phase, we
quantified the number of times the participant’s gaze tra-
versed the midpoint of predicted outcomes on each trial.
Indeed, the number of switches across the outcome
boundary increased during adjust policy trials (t = 5.57,
p , .001) and when partners were untrustworthy (t = 9.50,
p , .001), recapitulating H-gaze patterns (Figure 2D). In-
formation sampling patterns should also vary as participants
adeptly learn to predict their partner’s behavior, particularly
during exploit policy trials when choice policies were pre-
sumably optimized. In particular, as participants learned to
anticipate their partner’s return, they may be motivated to
expediently gather information and refine their predictions;
thus, the rate of sampling may increase during periods of
optimized behavior. To test this, we computed the sampling
rate (values sampled/s) as a model-free metric of information
sampling expediency. Consistent with this hypothesis, the
sampling rate was greater during exploit versus adjust trials
(t = 22.14, p , .032) (Figure 2D), indicating that the way
participants sampled information in the task was indeed
sensitive to policy reliability, recapitulating our EU findings.
024; -:-–- www.sobp.org/BPCNNI



Figure 2. Expressions of uncertainty dynamically adjusted with changing task demands. (A) Example gaze trajectories. Panels show gaze trajectories from
prototypical participant trials. High policy uncertainty was characterized by increased switching across the outcome boundary, whereas high EU trials were
characterized by greater dispersion of eye movements. (B) Gaze-derived measures of uncertainty. Policy uncertainty and EU estimates were sensitive to
valence and trial type. Participants showed greater EU on exploit policy trials and when partners were untrustworthy. In contrast, untrustworthy partners
elicited greater policy uncertainty on adjust policy trials. (C) Expressed policy uncertainty and EU shift with changing task demands. Left panel shows mean
estimates of policy uncertainty and EU dynamically oscillate depending on whether prior choice policies could be exploited or needed to be adjusted. Results
for 1 example partner type are shown. Right panel shows mean estimates of each type of uncertainty aggregated across all partner types. (D) Model-free gaze
signatures. Gaze traversed the outcome boundary (i.e., the net gain vs. net loss side of the prediction bar) more frequently on loss than gain trials, and on adjust
vs. exploit trials. Sampling rate indicated that participants more expediently sampled the search space on exploit than adjust trials, suggesting a tendency to
narrow one’s predictions once the policy was optimized. (E) Policy uncertainty and EU were associated with model-free gaze signatures. H-gaze tracked the
number of switches across the outcome boundary, whereas EU-gaze reliably captured the rate of sampling across multiple possible outcomes. *p, .05, **p ,

.01, and ***p , .001. Errors bars indicate the standard error of the mean.
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Thus, simple, model-free gaze signatures reliably captured
uncertainty about whether anticipated outcomes were worth
the investment (policy uncertainty) (Figure 2E) but also how
Biological Psychiatry: Cognitive Neuroscien
participants accumulated additional knowledge about
specific outcomes when choice policies were already opti-
mized (EU).
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Anxiety Affected the Ability to Detect Policy
Uncertainty

Individual variability in tolerance of uncertainty is likely to affect
how humans attend to and expediently resolve uncertainty
signals. Replicating our prior results (52), we observed that
highly anxious participants invested significantly more money
on loss blocks (i.e., when partners were untrustworthy) than
the low-anxiety group (untrustworthy-start partner: valence 3

group interaction, t = 2.21, p = .027; neutral-start partner:
valence 3 group interaction, t = 2.18, p = .030; trustworthy-
start partner: valence 3 group interaction, t = 2.05, p = .040)
(Figure 3A), resulting in greater monetary losses (valence 3
Figure 3. Impact of anxiety levels on expressions of uncertainty and pupil-base
anxiety group invested significantly more money with partners that were untrust
terisks correspond to valence 3 group interaction effect for each partner type
significantly more money when interacting with untrustworthy partners (loss trials)
were trustworthy. *pint denotes the interaction effect between anxiety level and ou
to investing more money with untrustworthy partners, participants with high anxi
would be returned on loss trials. (D) Uncertainty difference by anxiety level. P
trustworthy partners and greater policy uncertainty with untrustworthy partne
asymmetrical expressions of uncertainty. *pint denotes the interaction effect be
ε-gaze only reaches statistical significance in the low-anxiety group. (E) Expressio
less policy uncertainty when interacting with untrustworthy partners compared
worthy partners. *pint denotes the interaction effect between anxiety level and ou
showed increased arousal during adjust policy trials after partners changed their
choice policies needed to be adjusted. *p , .05, **p , .01, and ***p , .001. Erro
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group interaction: t = 22.51, p = .012) (Figure 3B). We next
tested whether investments with untrustworthy partners were
accompanied by the belief partners were indeed trustworthy.
This hypothesis diverges from social signaling accounts that
would predict continued investment, despite having knowl-
edge that partners will not reciprocate—a mechanism for
restoring trust. Predicted outcomes derived from gaze mea-
sures indicated that participants with high anxiety also
expressed more optimistic beliefs about partner returns,
particularly when their partners were untrustworthy (valence 3

group interaction: t = 3.16, p = .002) (Figure 3C). Thus, our
findings suggest that altered learning profiles did not emerge
d arousal. (A) Mean investment differences across anxiety groups. The high-
worthy leading to greater monetary losses than the low-anxiety group. As-
. (B) Net earnings across anxiety level. Participants with high anxiety lost
than the low-anxiety group. Groups did not differ on earnings when partners
tcome valence. (C) Predicted earnings from gaze by anxiety level. In addition
ety also expressed more optimistic beliefs about the amount of money that
articipants with low anxiety expressed greater epistemic uncertainty with
rs. In contrast, participants with high anxiety exhibited reduced valence-
tween anxiety level and outcome valence where the effect of valence on
ns of policy uncertainty from gaze. Participants with high anxiety expressed
with participants with low anxiety, indicating reduced sensitivity to untrust-
tcome valence. (F) Pupil arousal and task demands. The low-anxiety group
behavior, whereas the high-anxiety group showed suppressed arousal when
rs bars indicate the standard error of the mean.
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from a desire to restore trust, but rather from biased beliefs
that partners would reciprocate.

We next evaluated whether anxiety affects how effectively
individuals resolve uncertainty when learning about others. To
formally capture the relative weighting between policy uncer-
tainty and EU, we quantified the relative difference between
gaze-derived policy uncertainty and EU estimates on each trial
(ε-gaze = H-gaze 2 EU-gaze), yielding a signed variable that
indicates whether policy or EU dominates at that moment
(1ε-gaze: greater H-gaze; 2ε-gaze: greater EU-gaze).
Comparing ε-gaze differences between high- and low-anxiety
groups, we found that the low-anxiety group was more un-
sure of the optimal choice policy when partners were un-
trustworthy and conversely expressed greater uncertainty
about precise values (epistemic knowledge) with trustworthy
partners (valence 3 group interaction: t = 22.16, p = .031)
(Figure 3D). This indicates that participants with low anxiety
differentially prioritized which type of uncertainty signal to
resolve depending on their partner’s trustworthiness. Although
participants with high anxiety expressed a similar profile,
valence-dependent expressions of uncertainty did not reach
statistical significance.

Next, we tested whether anxiety levels affected the
expression of distinct sources of uncertainty. Although both
groups expressed greater policy uncertainty when interacting
with untrustworthy partners (main effect of valence: t = 12.13,
p , .001) (Figure 3E), participants with high anxiety expressed
less policy uncertainty compared with the low-anxiety group
(valence 3 group interaction: t = 22.38, p = .017). Groups did
not vary in their expressions of EU. Collectively, these findings
reveal key differences between high- and low-anxiety in-
dividuals: People with low anxiety exhibit distinct prioritization
of uncertainty signals depending on their partner’s trustwor-
thiness, a process that was blunted in the high- anxiety group.
Furthermore, participants with high anxiety showed reduced
policy uncertainty about partners, suggesting more entrenched
policies when interacting with untrustworthy individuals. The
tendency toward fixed policies (and thus reduced policy un-
certainty) was mirrored by more optimistic beliefs, indicating
that reduced sensitivity to policy uncertainty in the high-anxiety
group emerged in part from harder-to-undo beliefs once par-
ticipants learned that a partner was trustworthy.
Individuals With Anxiety Showed Blunted Arousal to
Policy Uncertainty

Two common threads emerged across our behavioral and
gaze-based analyses. First, we found that highly anxious
participants were slower to behaviorally adapt to increasingly
untrustworthy partners. Second, we found that the relative
expression of policy uncertainty was altered in individuals with
anxiety, particularly in the loss domain. However, it remains
unclear whether slower adaptation to untrustworthy people
occurred because participants with anxiety failed to detect
policy uncertainty writ large or because they maladaptively
responded to policy uncertainty. With the latter, maladaptive
responding could be a function of persistently enhanced
physiological arousal. To test these competing hypotheses,
we compared the relative magnitude of pupil-linked arousal
during feedback across exploit versus adjust policy trials.
Biological Psychiatry: Cognitive Neuroscien
As demonstrated in prior work, increased pupil-based arousal
during feedback indexes the magnitude of surprise elicited
from outcomes and the rate of learning adjustment (43). Thus,
by linking distinct policy reliability periods with pupil-based
arousal, we can identify the extent to which increased
arousal served as a distinct physiological update signal in the
high- and low-anxiety groups. Comparing arousal profiles,
participants with low anxiety demonstrated the predicted
pattern of increased arousal after partners’ behaviors crossed
the outcome boundary, indicating that the choice policy should
be updated, whereas highly anxious participants demon-
strated reduced arousal during this same time period (trial
type3 anxiety level interaction: t =23.13, p = .002) (Figure 3F).
These effects were further modulated by valence, such that the
low-anxiety group exhibited increased arousal when engaging
with increasingly untrustworthy partners (policy period 3

valence interaction: t = 2.24, p = .025), whereas the high-
anxiety group generally reduced arousal when partners were
untrustworthy (main effect of valence: t = 22.52, p = .012).
Thus, the arousal pattern from our pupillometry measures
suggests that reduced learning in the high-anxiety group
arose, in part, from a failure to physiologically respond to un-
stable choice policies.

Computational Modeling Revealed Asymmetrical
Reductions in Learning From Social Losses Versus
Rewards in the High-Anxiety Group

Flexibly resolving policy uncertainty and EU guides successful
learning in a dynamic environment—a process that is disrupted
by anxiety. To examine the mechanistic link between these
uncertainty signals and the rate of learning adjustment, we
used a computational modeling approach. We tested and
compared 3 Bayesian reinforcement learning models (see the
Supplement). Our core model, dynamic Bayesian reinforce-
ment learning (DBRL), was developed in our prior work (52) in
which trial-level beliefs are adjusted through outcome history.
As a Bayesian learner accumulates evidence that a partner is
(un)trustworthy, it becomes more confident in that belief. Thus,
when a partner changes their behavior, such a model will
overly rely on the history of prior outcomes (56,57). To capture
how the effect of prior outcomes on posterior beliefs should be
adjusted in a nonstationary environment, our dynamic
Bayesian model leverages changes in policy uncertainty to
modulate decay (i.e., forgetting). By dynamically decaying prior
beliefs as policy uncertainty increases, one can prioritize
learning from more recent outcomes and quickly accumulate
evidence, allowing new choice policies to form. Thus, rather
than assuming a constant probability of change at a fixed rate,
decay increases when the agent becomes more uncertain
about what to do, thereby balancing the trade-off between
stability and flexibility (6). In the model, policy uncertainty is
calculated as the entropy, H, over the agent’s choice proba-
bilities, where p1 and p2 refer to the agent’s probability of
investing maximally ($10) or minimally ($1), respectively.

Ht ¼ 2½p1 3 log2ðp1Þ 2 p2 3 log2ðp2Þ� (1)

Notably, the analogous formulation of H was used to calculate
our gaze-derived estimate of policy uncertainty, H-gaze (see
the Supplement). Gaze and model-derived H were positively
ce and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI 7
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correlated (t = 2.69, b = 0.036, p = .007), validating our
assumption that H and H-gaze index uncertainty about one’s
current policy.

Consistent with our previous model for this task, decay was
modeled separately for gains and losses (gpos and gneg,
respectively). We further deconstructed g into a constant g0

term (baseline beliefs about changeability) and a separate g1

term to allow decay to further increase or decrease as a
function of the learner’s change in policy uncertainty from trial
to trial, quantified by DH. Note that, in our prior work, we
constrained g1 to negative values, reflecting the assumption
that as policy uncertainty increases, prior values are decayed.
In our current model, DBRL-2, we relaxed this assumption and
allowed changes in policy uncertainty to either decay prior
reward history or exert the opposite effect of preserving prior
knowledge (see the Supplement), allowing us to better capture
the behavioral profile of participants with anxiety who show
reduced learning when policy uncertainty increases.
A B

D

Figure 4. Dynamic Bayesian reinforcement learning (DBRL) model showed tha
DBRL-2 simulated investments from maximum likelihood estimation (MLE) chec
fitting) parameters. Model-simulated data recapitulated learning differences betw
that the best-fitting model to the data was adjusted DBRL-2. (C) Model-estimate
when choice policies needed to be adjusted consistent with the pattern observed
and anxiety levels. Participants with high anxiety showed reduced, rather than inc
observed empirically. (E)Model decay parameter. The gamma intercept (g0) captu
a valence-specific learning asymmetry toward preserving previously learned rew
were untrustworthy, an asymmetry that produced a tendency to overinvest with un
error of the mean. AIC, Akaike information criterion.

8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
gpos ¼ g0pos1 g1pos3 DH (2)

gneg ¼ g0neg1 g1neg3 DH (3)

We tested and compared a set of 4 nested Bayesian rein-
forcement learning models, 3 of which included additional g1

terms to dynamically adjust the decay rate (DBRL) (see the
Supplement for details). Across both high- and low-anxiety
groups, the DBRL-2 model best captured behavior (pro-
tected exceedance probability . 0.99) (Figure 4B; see the
Supplement for model comparison details) and could reliably
reproduce participant choices (see maximum likelihood esti-
mation model simulation; Figure 4A). To validate that policy
uncertainty estimates from the model (H) were generally
C

E

t individuals with anxiety were slower to adapt to untrustworthy partners. (A)
k. Data were simulated using each participant’s MLE-optimized (i.e., best-
een groups. (B) Model comparison. Bayesian model comparison revealed
d H and task demands. Model estimates of policy uncertainty (H) increased
from our gaze-derived policy uncertainty estimates. (D) Model-estimated H

reased, policy uncertainty (H) on loss trials, consistent with (E) the pattern we
red baseline beliefs about changeability. Highly anxious individuals exhibited
arding values and having more uncertain beliefs (i.e., priors) when partners
trustworthy partners. *p, .05, ***p, .001. Errors bars indicate the standard
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consistent with our gaze-based policy uncertainty measures
(H-gaze), we examined the overall profile of trial-level H pat-
terns from the model. Mirroring the physiological gaze-based
analyses (Figure 2B), model-estimated H was greater during
the adjust versus exploit policy trials when choice policies
need to be revised (t = 4.94, p , .001) (Figure 4C). Further-
more, model-estimated H also recovered valence-dependent
policy uncertainty differences across high- and low-anxiety
groups (valence 3 anxiety group interaction: t = 6.28,
p , .001) (Figure 4D). In particular, model-estimated policy
uncertainty was lower for losses in the high-anxiety group,
indicating less behavioral variability (i.e., perseveration) when
partners were untrustworthy, recapitulating our gaze-based
analysis (Figure 3E).

Comparing decay parameters from the winning DBRL-2
model, we observed a significant difference in baseline
decay, g0, across groups in the loss domain (valence3 anxiety
group interaction: t = 22.33, p = .0219) (Figure 4E), revealing a
learning asymmetry in the high-anxiety group for gains versus
losses. In particular, decay parameters in the high-anxiety
group revealed a tendency to disproportionately encode
reward history while selectively forgetting the history of losses.
This pattern of biased learning generated more precise and
entrenched beliefs about a partner’s trustworthiness, which
would consequently produce a pattern of overinvesting.
DISCUSSION

Adaptively functioning in our social world requires integrating
across multiple sources of uncertainty so we can expediently
refine our beliefs and behaviors. We developed a novel eye-
tracking procedure premised on information sampling the-
ories, which granularly teased out distinct sources of uncertainty
in real time, allowing us to evaluate how policy uncertainty and
EU are differentially prioritized for learning. Our study reveals 2
key findings: people dynamically reoriented their attention to-
ward each source of uncertainty as social interactions unfolded,
and this attentional flexibility was critical for effectively adjusting
one’s behavior. In contrast, people with high anxiety showed
reduced attentional switching between different sources of un-
certainty and reduced expressions of policy uncertainty—a
signal that is crucial for policy optimization.

Furthermore, while our findings dovetail with prior work
showing that highly anxious people learn less from uncertain
outcomes (42,50–52), we showed that anxiety altered learning
through a biased information filter. In particular, by simulta-
neously measuring choice, predictions, and physiology, we
found that individuals with anxiety disproportionately encoded
reward histories, leading to more rigid, optimistic beliefs and
inflexible choice policies, particularly in the loss domain. These
findings rule out a social signaling explanation, instead sug-
gesting that the locus of maladaptive behavior in our task was
rigid beliefs and policies that become insensitive to feedback.
Critically, our findings show altered social learning profiles
emerging from a reward-encoding bias, which diverges from
long-standing threat sensitivity accounts of generalized anxiety
(58,59). While both perspectives converge on bias information
processing and inflexible beliefs that ultimately result in mal-
adaptive behavior, future work should investigate task environ-
ments and contexts that elicit altered reward versus threat
Biological Psychiatry: Cognitive Neuroscien
processing. Along similar lines, a key element of our task design
was evoking carefully controlled social rewards and threats
through computerized agents, which were perceived as believ-
able to varying degrees among participants (see the
Supplement). Although posttask believability ratings did not
significantly predict behavior, the use of social deception remains
a fundamental limitation of the current design. Future work should
aim to construct computerized agents that are indistinguishable
from human partners or to eliminate the use of deception.

Our study sample was also characterized by a high preva-
lence of generalized anxiety symptoms. High and low anxiety
levels were determined from scores on the GAD-7 scale and
the STAI-Trait subscale. Within our final sample, approximately
half of the participants (n = 49, w52%) indicated symptoms
above clinical significance thresholds. Although reported
anxiety levels in our study are higher than those observed in a
general population [estimated prevalence w25% (60)], anxiety
levels in the current study may be reflective of a unique com-
bination of stressors. Recent high-profile reports have identi-
fied steeply increasing rates of mental illness among young
adults and college-aged cohorts (61,62)—the primary de-
mographic of the current study (ages 18–25, mean age: 20.4
years). One study (63) evaluating the prevalence of mental
health disorders in undergraduates reported that most stu-
dents were overwhelmed by their workload (w86%) and felt
highly anxious day to day (w65%)—a pattern borne out across
similar studies (64,65). Thus, the combined effects of an age-
skewed sample and academic stress may explain higher re-
ported anxiety levels in our study. Furthermore, we identified
high anxiety levels using clinically recommended guidelines;
however, it is worth noting that exceeding cutoffs on the GAD-
7 or STAI-Trait scale is not necessarily diagnostic of patho-
logical anxiety. This highlights the need for increased clinical
translation work and methodological innovation to identify
when self-reported symptoms and altered learning profiles are
associated with maladaptive, real-world beliefs and behavior.

Finally, our eye-tracking procedure, which dissociated
among different forms of uncertainty in real time, allowed us to
evaluate whether altered learning might arise from individual
variability in attending to distinct sources of uncertainty. While
prior work speculates that reduced learning from losses in
people with anxiety might arise from disrupted learning under
uncertainty (42,50,51), here we explored the balance in
learning from one specific type of uncertainty versus another.
In particular, our findings leave open the possibility that the
balance between prioritizing distinct uncertainty signals may
be reconfigured in anxiety disorders such that one source of
uncertainty can be overly prioritized in the system (e.g.,
epistemic knowledge), leaving other forms of uncertainty, such
as policy uncertainty, unresolved. Future work should consider
how the functional utility of adjusting one’s attention toward
epistemic knowledge or adjusting one’s policy might be gov-
erned by prefrontal systems (i.e., a hypothetical meta-critic)
(12), conveying the prioritization of uncertainty signals to
solve a particular problem, and how biases in this system
might alter learning. This account leaves open a new
perspective in computational psychiatry approaches toward
understanding anxiety-based disorders—one in which dis-
rupted learning and decision making might reveal a divergent
and heterogeneous set of goals and motivations of the learner.
ce and Neuroimaging - 2024; -:-–- www.sobp.org/BPCNNI 9
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