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SUMMARY
Deepbrain stimulation (DBS)anddopaminergic therapy (DA) arecommon interventions forParkinson’sdisease
(PD). Both treatments typically improve patient outcomes, and both can have adverse side effects on decision
making (e.g., impulsivity).1,2 Nevertheless, they are thought to act via differentmechanismswithinbasal ganglia
circuits.3 Here, we developed and formally evaluated their dissociable predictions within a single cost/benefit
effort-based decision-making task. In the same patients, wemanipulated DAmedication status and subthala-
mic nucleus (STN) DBS status within and across sessions. Using a series of descriptive and computational
modeling analysesof participant choices and their dynamics,we confirmadouble dissociation: DAmedication
asymmetrically altered participants’ sensitivities to benefits vs. effort costs of alternative choices (boosting the
sensitivity to benefits while simultaneously lowering sensitivity to costs); whereas STN DBS lowered the deci-
sion threshold of such choices. To our knowledge, this is the first study to show, using a common modeling
framework, a dissociation of DA andDBSwithin the same participants. As such, this work offers a comprehen-
sive account for how different mechanisms impact decision making, and how impulsive behavior (present in
DA-treated patients with PD and DBS patients) may emerge from separate physiological mechanisms.
RESULTS

‘‘Everybody wants the most they can possibly get. For the least

they can possibly do’’ - Todd Snider. 2003. ‘‘Easy Money.’’

Deep brain stimulation (DBS) and dopamine (DA) medication

both typically improve PD motor symptoms but can in some

cases exacerbate or trigger impulsive behavior.1,2,4,5 Although

these clinical side effects appear similar, impulsivity is a broad

construct and theoretical models predict dissociable mecha-

nisms for how DA and DBS manipulations affect decision mak-

ing in corticostriatal circuits.3,6–8 In the basal ganglia, DA exerts

opposite effects on D1- and D2-expressing neurons, modu-

lating the relative sensitivity to the benefits and costs of a pro-

posed action.7,9,10 DA manipulations can alter this balance:

increasing DA may induce biased decisions that discount

potential losses and/or effort costs.4,11–14 Conversely, low-fre-

quency oscillatory activity from the prefrontal cortex communi-

cates with the subthalamic nucleus (STN) to increase the deci-

sion threshold, facilitating more deliberative and hence slower

and less impulsive choices.3,15–18 High-frequency STN DBS

disrupts these signals, lowering the decision threshold,

improving motor function, and inducing rash decisions.19–21
Curre
Importantly, both DA and STN DBS mechanisms have been

linked to the development of impulse control disorders in Par-

kinson’s disease (PD).2,22–24

The widespread comorbidity and heterogeneity of neurological

and psychiatric illness imposes a pernicious challenge for preci-

sion medicine: what is the best treatment for an individual if there

are multiple possible mechanistic culprits that could trigger the

same symptoms? Behavioral or computational biomarkers hold

promise for transforming psychiatric and neurological diagnosis

and treatment.25–28 To date, however, no single task or model

has dissociated the impact of STN vs. DA mechanisms within in-

dividuals. Here, our aim is to test the basic mechanisms by which

STN and DA manipulations influence motivated decision making;

variations of which at the extreme could drive distinct aspects of

impulsivity. Though particularly relevant for PD, inferring which

circuit could drive impulsive behavior is relevant for any individual

exhibiting pathological behavior (as in the case of ADHD).

We assessed the hypothesized orthogonal effects of STNDBS

and DA manipulations within individual subjects performing a

novel effort-based decision-making task. Participants had to

choose between a high-effort, high-reward option and a low-

effort, low-reward option on every trial (Figure 1A). By systemat-

ically varying the effort required to receive different rewards, we
nt Biology 34, 655–660, February 5, 2024 ª 2023 Elsevier Inc. 655
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Figure 1. Experimental task design, simulations, and empirical behavior

(A) Participants chose between a hard-effort, high-reward option and a low-effort, low-reward option centered around their subject-specific indifference point

(determined by an earlier titration phase). Participants then squeezed a dynamometer to fill up the selected bar. Within each DA session, participants performed

the task DBS ON and DBS OFF in a pseudo-randomized order.

(B and C) Simulated and empirical effects of DBS and DA manipulations. Simulated patterns were obtained from a drift diffusion model in which evidence

accumulation (drift rate) varied as a function of benefits and costs and choices were determined when this evidence reached the decision threshold (see Table S3

for DDM simulation parameters).

(B) Empirical choice patterns in model and data favor the hard-effort option with increasing net differences in benefits-costs (relValuation). Reducing decision

threshold (left) predicts a shallower psychometric function with reduced sensitivity to both benefits and costs (relValuation); this pattern was observed ON vs. OFF

DBS (right).

(C) Simulated and empirical data broken down into relative benefits and costs separately. DA simulations asymmetrically altered the impact of benefits vs. costs on

drift rate, based on predictions from computational models of striatal opponency7,9 in which DA elevations increase choice sensitivity to relative benefits (top) while

simultaneously decreasing choice sensitivity to relative costs (bottom).11 Thesepatternswere observedONvs.OFFDA (right). Insets represent individual coefficient

estimates from mixed-effects models regressing DA and DBS on choice, showing mean of individual coefficients; error bars are calculated within-subject.

(D) Double dissociation of empirical coefficients extracted from mixed-effect models across subjects. DA induces within-subject differences in differential

sensitivity to benefits vs. costs (left), whereas DBS lowers sensitivity to both (relValuation) (right). Error bars represent standard error.

See Table S2 for linear mixed regression outputs and Table S3 for simulation parameters.
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quantified individuals’ sensitivities to the benefits (monetary

incentive to choose the hard option) and costs (effort required

to receive the reward) when making a choice, while also assess-

ing the dynamics of such choices in the form of response times

(RT) distributions.

Nine individuals with PD treated with chronic STN DBS partic-

ipated in the study (see Table S1 for patient characteristics and

exclusion criteria). DA and STN DBS were manipulated within

and across sessions in a pseudo-randomized order. During

each session, participants made two alternative forced choices

about whether to engage in low or high amounts of physical

effort for monetary reward. Effort demands (‘‘costs’’) were varied

parametrically via the level of required manual grip force,29,30

whereas ‘‘benefits’’ were varied via monetary reward (Figure 1).

An initial ‘‘titration’’ phase offered individuals a range of choices,

allowing us to assess individual participants’ indifference points

(where subjective benefits equal the subjective costs). A
656 Current Biology 34, 655–660, February 5, 2024
subsequent test phase was administered in which offers were

systematically sampled on either side of the indifference point,

facilitating more sensitive estimation of the impact of relative

benefits (relBenefits) vs. relative costs (relCosts).11 To ensure

that any effects of treatment were not related to their core impact

on motor function, maximum grip strength was recalibrated

within each DBS /DA condition.31

Based on formal models, we predicted that DA andDBSwould

have dissociable effects on psychometric functions that are

particularly prevalent around participants’ indifference points

(i.e., when the relative benefits of choosing the hard option equals

the relative costs) (Figures 1B and 1C). We estimated partici-

pants’ indifference points through the titration procedure, allow-

ing us to determine the relative number of points (relBenefits)

and relative effort levels (relCosts) for each offer relative to this

indifference. Theoretical models7,9,32 predict that striatal DA ma-

nipulations should asymmetrically alter the impact of benefits and



Figure 2. Computational model and posterior predictive check

(A) Illustration of drift diffusion model (DDM). The DDMwas used to estimate how trial-by-trial changes in offered reward and cost (effort required) modulated the

evidence accumulation (indexed by the drift rate [v]) toward the upper (hard effort high reward) or lower (low effort low reward) bound. The boundary separation

parameter determines the amount of accumulated evidence required to commit to a choice (i.e., decision threshold). Basal ganglia models suggest DAwill chiefly

affect how rewards and costs map on to the drift rate whereas DBS will primarily result in a decrease in boundary threshold.

(B) Sample illustration of the angle variant of the DDM. The angle model contains an additional parameter (theta) which allows for a collapsing decision threshold

as opposed to a static decision bound. Red lines show linearly decreasing bounds and an example fixed drift rate; blue histograms show expected response time

(RT) distributions for choices to upper and lower boundary from one set of simulations. Adapted from Fengler et al.35.

(C) The winning model’s posterior predictive check (PPC) illustrates the model’s (blue line) ability to capture empirical (maroon line) choice and RT distributions

across different combinations of the hard choice’s reward and effort levels. Simulations stem frommodel-derived parameters that best fit individuals’ choices and

RTs. For each panel, RT distributions to the right of 0 indicate choices of the hard option, and those to the left denote choosing the easy option.

See Figure S1 for detailed DA and DBS PPCs.
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costs on choice, with DA increasing sensitivity to relative benefits

but decreasing sensitivity to relative costs (Figure 1C).

Conversely, if STN DBS lowers the decision threshold,20,21,33 it

should allow noise in value estimates to reduce choice consis-

tency, shallowing the slope of psychometric choice function for

both benefits and costs (and their differences, termed relValua-

tion). We quantified these effects via logistic regression analyses

assessing sensitivity to benefits and costs, before offering amore

parsimonious computational process drift diffusion model that

can simultaneously account for RT distributions that accompany

these choices as a function of differing reward and effort levels.

To statistically evaluate these qualitative patterns (Figures 1B

and 1C), we used linear mixed-effect models in which choice

was modeled as a function of relBenefits and relCosts, DA,

DBS, and their interactions (SeeSTARMethods section statistical

modeling for details). Supporting theoretical predictions, a

mixed-effects model (choice� benefits*DA + costs*DA) revealed

that DAON increased the contribution of benefits on choice while

simultaneously decreasing the effect of costs (Figure 1D).

Conversely, DBS lowered the impact of both benefits and costs

(Figure 1B) in terms of the overall relValuation. Similar patterns

were seen for both benefits and costs separately (Figure 1D).

These patterns mirrored those expected from simulations, moti-

vated by theoretical models of the basal ganglia, in which DA
was assumed to asymmetrically alter the impact of benefits and

costs on drift rate whereas DBS lowers decision threshold

(Figures 1B and 1C; see supplemental information for model de-

tails). We further quantified these within-subject effects at the in-

dividual level by extracting each individual’s estimated interaction

coefficients from both mixed-effects models (see insets,

Figures 1B and 1C). DA ON increased sensitivity to benefits

(T = 2.26; p < 0.024) and decreased sensitivity to costs

(T = �1.81; p = .069). Conversely, DBS reduced sensitivity to re-

lValuation (T =�4.17; p < .01). These treatment effects amounted

to a double dissociation: DA effects on benefits vs. costs were

significantly greater than DBS effects (T = 3.66,p < .001), and

vice versa for relValuation (T = 4.75,p < .01) (Figure 1D). Finally,

although our core analyses focused on sensitivity to benefits

and costs after adjusting for the patients’ indifference point in

their current DA/DBS state, we also confirmed that, as predicted,

DA altered the indifference points themselves (T = 3.16; p < .001),

increasing the sensitivity to benefits.

Although the above choice functions supported our initial pre-

dictions, models of decision dynamics are more diagnostic of the

interpretations offered. For example, a reduced slope of a psy-

chometric function as seen ON DBS could arise for a multitude

of reasons, including attentional lapses or other sources of

noise.34 In contrast, if the effects are mediated by a change in
Current Biology 34, 655–660, February 5, 2024 657



Figure 3. Predictions and selected posteriors from the winning computational model

(A) Theoretical DDM effects of DA ON (primarily increasing drift rate due to asymmetrical effect on benefits and costs) and DBS ON (lowering decision threshold).

Group posterior distributions for (B) relBenefits (green) and relCosts (coded as negative here, leading to a positive coefficient; red) on drift rate.

(C) Interaction terms showing DA ON increases sensitivity to relBenefits (green) and decreases sensitivity to costs (red) on drift rate.

(D) Within-subject difference between DA ON effect on relBenefits and relCosts, i.e., the difference between red and green from (C).

(E) DBS ON reduces decision threshold.

See Figure S1 for DA and DBS PPCs, Figure S2 for the group posterior effect of 4 hz stimulation on decision threshold, and Table S4 for individual participant drift

diffusion model results.
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decision threshold, these noisier choices should be accompanied

by a distinct change to the decision dynamics, quantifiable with a

sequential sampling model such as the drift diffusion model

[DDM]). The DDM models decision making as an accumulation

to a bound process, where the rate of accumulation (‘‘drift

rate’’) is determined by the strength of the evidence toward one

boundary or another, and the boundary separation is the decision

threshold. In the context of cost/benefit decisionmaking, the drift

rate is proportional to the relative benefits and costs of alternative

options11,28,35,36 such that relatively larger benefits should induce

faster choices toward high effort and larger costs faster choices

toward low effort. Around indifference, choices should not only

be more equivocal but also slower and with heavier tails.

Conversely, reductions in decision threshold should translate

into noisier (less consistent) but also faster decisions, particularly

around indifference. We tested the overall suitability of the DDM

using hierarchical Bayesian estimation of the DDM (HDDM16,35).

As predicted from a priori theory, the winning model allowed drift

rate to vary by relBenefits, relCosts, and their interaction with DA

status, and where decision threshold varied by DBS status.

Posterior predictive checks (PPC) confirmed that the DDM pro-

vided a good fit to the full spectrum of choices (Figure 2C). The

density of choices showed peaked RT distributions for high-effort

choices when benefits outweigh the costs, for low-effort choices
658 Current Biology 34, 655–660, February 5, 2024
when costs outweigh the benefits, and finally middling choices

near indifference were associated with wider RT distributions for

each option. Moreover, posterior distributions on model parame-

ters confirmed the a priori hypotheses that DA status would alter

the impact of benefits vs. costs on drift rate, whereas STN DBS

would alter the decision threshold (Figure 3A). As expected, relBe-

nefits and relCosts both affected drift rate (>99% group posterior

probability for an effect different than 0. Costs (red) are coded as

negative here, hence their impact on drift rate is positive) (Fig-

ure 3B). Critically, DAmedication increased the impact of benefits

on drift rate (Figure 3C green; interaction of DA on relBenefits

97% > 0) while simultaneously decreasing the impact of costs

(Figure 3C red; interaction of DA on relCosts 95% < 0). These

opposite effects complement the choice behavior analyses (Fig-

ure 1C) and offer additional evidence thatmodulating DA changes

how individuals weigh costs and benefits during choice and

their dynamics.7,11,28 Conversely, STN DBS reduced the deci-

sion threshold (Figure 3D, 95% > 0), replicating several prior

studies demonstrating that STN DBS reduces decision threshold

in a variety of perceptual and value-based decision-making

tasks,20,21,33,37 as well as studies linking trial-by-trial variations

in STN activity to decision threshold adjustments.17,33,38 More-

over, allowing DBS status (manipulated within session) to alter

the decision threshold improved model fit. Finally, we confirmed
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that the impact of both DA and STN DBS on model parameters

were consistent with posterior predictive checks on the patterns

of choices and RT distributions (DA and DBS PPCs shown in Fig-

ure S1). Although DA induced a preference for high-effort choices

as reward and effort increased, it also produced slower RTs when

patients selected the low-effort option; these patternswere repro-

duced by the model (Figure S1A). Conversely, DBS induced more

inconsistent choices and faster RT distributions near indifference,

without impacting choices or RTs at the extremes (overall high or

low value options), supporting the fixed-effects analysis reported

above and ruling out alternatives that DBS induced more random

choice across the board (Figure S1B).

DISCUSSION

These findings demonstrate dissociable impacts of DA and high-

frequency STN DBS on distinct components of effort and value-

based decision making within individual patients with PD.

Whereas DA altered the relative sensitivity of benefits vs. costs

of choice options, high-frequency DBS reduced the slope of the

psychometric function. Moreover, these effects were manifested

by distinct decision dynamicswithin the DDM. Evidence accumu-

lation is faster toward rewarding options, an effect reflected in

striatal electrophysiological data,39 and DA accentuated this pro-

cess while diminishing the sensitivity to costs. Conversely, DBS

reduced the decision threshold, leading to faster but noisier

choices around indifference point. Of note, these DBS effects

did not meaningfully change when including DBS low-frequency

blocks as well (see Figure S2; Table S2). DA and DBS’s individual

effects are consistent with previously reported data in the basic

sciences on howDA alters benefits vs. costs of effort across spe-

cies,7,11,14 whereas high-frequency STN DBS dynamically inter-

feres with the adjustment of decision threshold across

tasks.6,17,20,33,40 Our study builds on these results to show that

these effects can be dissociated within individual participants

by orthogonally varying DBS and DA status using a task designed

to be maximally sensitive to these differences. Importantly, these

effects cannot be attributed to raw effects of DBS and DA onmo-

tor function, as participants recalibrated their maximum grip

strength for each DA and DBS condition (Figure S3).

Principally, these results suggest DA and DBS operate on

separate nodes within the basal ganglia. Both DA and high-fre-

quency DBS have been suspected of triggering impulsive

behavior.1,8,10Our computational analysis suggests these effects

are mediated by distinct decision processes and their dynamics

even within the same individuals. In principle, such a computa-

tional biomarker may be useful for assessing underlying mecha-

nisms of impulsive decisions in patients with PD and, potentially,

other populations. However, while the within-subject design was

powerful enough to reveal these distinct contributions, we recog-

nizewedonot haveenoughpower to account for individual differ-

ences in the extent of these effects, which would require a much

larger sample size. For example, participants exhibit differential

effectsofDBSonchoice inboth thequalitativeandcomputational

analyses, but it is impossible to assess whether these individual

differences are related to theoretical reasons (such as electrode

placements) or whether they simply reflect observation noise.

Future work should focus on exactly how best to characterize in-

dividual reactivity to these treatments.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Empirical behavioral data This paper PDEffort_R_ready.csv: https://doi.org/10.5281/zenodo.10429624

Simulated behavioral data This paper dSim.csv: https://doi.org/10.5281/zenodo.10429624

Posterior predictive model data This paper ppcData_mAngleFinal.csv: https://doi.org/10.5281/zenodo.10429624

Posterior DDM model traces This paper TracesmAngleFinal.csv: https://doi.org/10.5281/zenodo.10429624

Software and algorithms

MATLAB R2009a MathWorks www.mathworks.com

Psychtoolbox Brainard and Vision41 http://psychtoolbox.org/

Behavioral analysis script This paper effortAnalysisFinal2023.R: https://doi.org/10.5281/zenodo.10429624

Computational DDM script This paper DDMScript.py: https://doi.org/10.5281/zenodo.10429624
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Guillaume Pagnier

(guillaume_pagnier@brown.edu).

Materials availability
No new materials have been created.

Data and code availability

d Deidentified participant behavioral data have been deposited on zenodo.com. See key resources table for unique DOIs.

d Scripts for behavioral analyses and figure generation (using R) have been deposited on zenodo.com. We have also provided

code to run the relevant computational models (using Python and HDDM). See key resources table for unique DOIs.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Participants and experimental conditions
Eleven patients diagnosed with Parkinson’s disease (PD) and implanted with a quadripolar electrode (model 3389, Medtronic Neuro-

logic Division, Minneapolis, MN, USA) successfully completed both DA sessions (ON and OFF medication) on separate days (min-

imum 8 days apart; DA order randomized). All patients included here were implanted with the 3389 model non-directional lead. Two

other patients (mean age 73.4 years) were excluded and did not complete the task due to clinical reasons (extreme fatigue and lack of

task comprehension). The nine remaining patients (8 male, mean age 62.7years ± 3.6) were run at similar times during the day across

sessions. All patients included herewere programmed using non-directional contact settings. See Table S1 for detailed demographic

information. All participants were referred to the study by neurologists who believed patients would be appropriate for behavioral

testing. To screen for impulse control disorders, patients completed the Dickman Impulsivity Inventory-short (DII), a validated 23

item true/false questionnaire that measures impulsivity on two subscales: functional and dysfunctional impulsivity.42 All patients ex-

hibited low to normal values in both subscales. All participants were on dopaminergic medication and could tolerate performing the

task OFFmedication andOFF DBS. For the DAOFF sessions, patients were instructed to refrain from taking their DAmedication for a

minimum of 12 h beforehand.

For each participant, ‘‘DBS ON’’ was defined as the therapeutic high frequency stimulation setting. This study is also part of an

ongoing exploratory project to characterize how different DBS settings (low/high frequency and ventral/dorsal electrode contact) in-

fluence effortful decision making. Our exploratory investigations have not led to consistent differences between ventral and dorsal or

high vs. low frequency stimulation, potentially due to current spread and difficulty to isolate impacts of anatomical loci within STN.

Thus, in this report we focus on the differential impacts of high frequency DBS ON/OFF vs. DA ON/OFF but for completeness we

describe the full procedure here. For each DA session, patients played through each block of 105 trials five times in a pseudo-ran-

domized order: 1) DBS OFF 2) therapeutic frequency dorsal stimulation 3) 4hz dorsal stimulation, 4) 4hz ventral stimulation, 5)
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therapeutic frequency ventral stimulation. Ventral stimulation involved stimulating at the most ventral contact possible. In these con-

ditions, amplitude was lowered until the patient did not experience any side effects (this was not common). In the rare cases where

the default therapeutic contact was more ventrally located, dorsal stimulation was done by stimulating the most dorsal contact. Our

original goal in stimulating ventral vs. dorsal was to stimulate separate circuits within the STN (motor which is putatively stimulated by

patients’ more dorsal contacts and limbic which is thought to be a function of stimulating the more ventral contacts) however the lack

of detailed imaging data for all patients as well as the fact that a few of our patients therapeutic contacts were ventrally located made

disentangling the effect of location challenging, if not impossible. Importantly, for each session and DBS block, patients recalibrated

their maximum force and re-titrated their indifference points, and thus all effects on indifference curves reported in the main text are

relative to these newly defined indifference points, and not confounded by changes in overall motor function. DBS blocks were sepa-

rated by a minimum of 5 min between blocks as a wash-out period. We did not find any evidence that DBS block order and session

order affected any of the main results described above.

Task
Participants were run at BrownUniversity (Providence, RI, USA) in a small roomon campus designed for human data collection.Med-

ical professionals were on standby in the unlikely instance of any adverse event. The task was written in MATLAB (Mathworks Inc,

Natick, MA,USA; version R2009a) using the Psychtoolbox extension.41 For each DBS block within each DA session, participants cali-

brated their maximum force, underwent the stepwise titration procedure, and performed the 105-test block phase. To calibrate, par-

ticipants were asked to squeeze the dynamometer as hard as they could to turn a visual cue from black to green (the background for

the entire experiment was a light gray). Participants’ maximum forcewas calculated as the average of the three attempts.43Maximum

force largely did not vary within patients (even across sessions and blocks), reducing the possibility that DA and DBS were signifi-

cantly varying grip ability. On the first block, participants underwent an instructions block, during which they were introduced to

the trial structure as well as the range of points they could be expected to receive (this was done to exclude any learning of what

constitutes a ‘‘high’’ reward during the task. A trial was composed of a forced choice paradigm; participants had to choose between

a low effort, low reward option (easy choice) and a high effort, high reward option (hard choice). The hard option offered either 460 or

520 points (a separate indifference point was calculated for each) while the easy option offered a range of points centered around

participants’ indifference points. A sample trial proceeded as follows: The easy option was denoted by the short bar while the

hard option was denoted by the taller bar; a red line on the tall bar indicated the height participants needed to reach to receive

the hard reward. During training, participants had to successfully demonstrate understanding of the tradeoffs between reward

and effort by successfully completing several ‘‘catch trials’’: i.e., when the hard reward matched the easy reward (and thus choosing

the easy option is the logical choice). This varied between two and ten practice trials. Afterwards, participants underwent a stepwise

titration procedure to determine patients’ block-specific indifference point, that is, how many points needed to be offered to render

participants indifferent to the selected option for a given effort level. This titration procedure and how relative benefits/costs are

calculated from these indifference points is adapted from the cognitive effort task.11 A separate indifference point was calculated

for easy trials (the red line denoting completeness was at 65% of participants MVC), medium trials (80% of MVC) and hard trials

(95% of MVC). Patients then completed the test block (105 trials), in which the offered reward and effort amounts were sampled

around each patients’ indifference point. To avoid fatigue effects and maximize the number of decisions participants made in the

allotted time, most trials did not actually require patients to ‘‘pay’’ the effort to receive whatever reward they chose. Instead, there

was a 12% chance on any given trial (during the titration and test phases) that the participants did have to perform the effort they

selected. Importantly, participants did not know prior to the decision whether they had to ‘‘pay’’ the effort to receive the reward.

The amount they were paid at the end of study (in US dollars) was proportional to the total number of points they received across

all the choices they made. DBS blocks and DA sessions were pseudorandomized across patients. Each DBS block within a DA ses-

sion took about 20 min to complete.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical modeling
Linear mixed-effects models were fit using the R package ‘‘lme4’’ were used to predict repeated-measures of choice (high effort/high

reward option or low effort/low reward option) with fixed effects of either the difference between benefits and costs (relValuation; to

test for the effects of DBS) or relBenefits and relCosts separately (to test our predictions for DA’s opposing effects). In each of these

models, we included the fixed effects as random effects as well and omitted intercepts from both the fixed and random effects. This

was possible since the titration procedure converted absolute rewards and effort costs to relative benefits and relative costs for each

individual for each DBS and DA condition. While our models predict DBSON’s’ effect to be strongest on relValuation, we also predict

DBS ON to lower sensitivity to both benefits and costs (as opposed to DA’s opposing effects of increasing sensitivity to benefits and

reducing costs). We ran an additional linear mixed-effects model to test this prediction as well as statistical models testing how low

frequency (4 hz) stimulation affects relValuation (Table S2).

Computational modeling
We use the Python-based HDDM toolbox and the recent LAN extension to simulate and fit behavioral choices and response time

distributions.16,35 DDMs have been used extensively to study latent processes during value-based decision making, wherein
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parameter estimates can be more informative about clinical status than the raw choices and RTs.28 In these cases, the drift rate

serves as a proxy for evidence accumulation towards the high reward, high effort option, with increasing drift when reward is high

or effort is low. The decision threshold reflects the amount of evidence accumulated before committing to a decision, and typically

varies with speed accuracy tradeoffs. Past work suggests DA modulates drift rate in a differential manner; DA ON boosts the impact

of reward on drift rate while decreasing the impact of cost (effort level).9,11,36 Separately, high frequency DBS has been shown to

decrease decision threshold. Considering these findings, we simulated four conditions 1) DA ON DBS ON 2) DA ON DBS OFF 3)

DA OFF DBS ON 4) DA OFF DBS OFF using a standard DDM (precise simulation parameters are located in Table S3). The number

of simulated trials was comparable to the number of empirical trials.

Therefore, in line with our simulations our principal model (Figure 2) allowed drift rate to vary as a function of reward and effort

amounts, with clear parametric effects of each observable in posterior parameter estimates and posterior predictive checks (Fig-

ure 3B). Model comparison was done by adding theoretically meaningful components and subsequently assessing whether (through

posterior predictive checks and DIC) model fit was improved. We confirmed our a priori hypothesis that model fit improves if DA sta-

tus impacted the influence of cost and benefits on drift rate, while DBSwould impact decision threshold (Figure 3). Parameter conver-

gence was inspected visually and Gelman Rubin statistics were less than 1.1 for all parameters in the final model represented in the

main text (Figures 2 and 3). Final models were run with at least 20000 samples to ensure smooth posteriors.

We found that the data were better fit by a DDMwith a linearly collapsing decision threshold (Angle model35) which is sensible in a

task that includes choices near the indifference points (otherwise a decision maker might waste time accumulating trials with zero

drift44), and thus all results are reported from this model (but all patterns observed in terms of impacts of DA and DBS were qualita-

tively similar in the fixed threshold model). Allowing the rate of collapse or starting point bias to vary by DBS and DA did not improve

overall fit nor were the posteriors significantly different than 0.

The impact of DA and DBS can be seen not only in parameter estimates described in the main text but also in terms of their disso-

ciable influences on choices and RT distributions for combinations of reward and effort levels. To visualize these effects, we simu-

lated choices and RTs from the winning model using the posterior distributions of fitted model parameters (i.e., posterior predictive

checks; Figure S1). This exercise confirmed that allowing DA to only influence drift rates and DBS to only influence threshold predicts

dissociable patterns that were largely observed in the data. Specifically, while ON DA, patients showed greater preference for high

effort options specifically when reward levels were high (highReward; DA PPC right column) and effort levels were high enough (mid-

Effort and highEffort). The model captures these patterns and their RT distributions and makes a novel prediction when participants

ON DA domake choices favoring the low effort option, they should actually be slower to do so (despite the common notion that DA

speedsmotor RTs). In themodel, this results from a reduced impact of cost on drift rate and can be seen in both simulated and empir-

ical data most evidently in the middle panel (midReward, midEffort) but also to a lesser extent (in both model and data) when the high

effort choice was in the lowest effort ‘‘lowEffort’’ bin (top row, mid and high reward).

Conversely, the effect of DBS in the winning model is to reduce the decision threshold. Note that in the main text we reported that

this effect, while consistent with several other reports in other domains,6,19,20 was somewhat marginal (mean effect of DBS on

thresholdwas 95%<0). Inspection of the posteriors for individual subjects revealed that the reduction in decision thresholdwas clear

in six out of nine individuals (See Table S4 for individual reports). Note that a lower decision threshold should impact choices when

value differences are small (i.e., near indifference), and hence noise would have a larger impact on choice consistency. Indeed, one

can see in model simulations from estimated parameters on DBS (where only decision threshold varied on vs. off DBS) induces more

inconsistent choices and faster RTs specifically in the center row (mid effort) and confirmed empirically across that row. Importantly,

the lowered threshold does not imply simply more random choice or lapses of attention; DBS does not induce more random choices

when reward is high and effort is low or vice versa, and the model largely captures these patterns as well. Thus, both the winning

computational model and the qualitative predictions highlight DBS differences to be centered around indifference. The finding

that participants respond logically at subjective value difference extremes specificity helps preclude the possibility that DBS globally

affects cognition - instead high frequency DBS ON lowers decision threshold but when evidence accumulation is so strong in one

direction or the other, participants are still capable of making the optimal choice.
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