
Creative Commons NonCommercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
License (https://creativecommons.org/licenses/by-nc/4.0/), which permits noncommercial use, reproduction, and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

https://doi.org/10.1177/25152459241298700

Advances in Methods and
Practices in Psychological Science
January-March 2025, Vol. 8, No. 1,
pp. 1–26
© The Author(s) 2025
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/25152459241298700
www.psychologicalscience.org/AMPPS

Tutorial

The drift-diffusion model (DDM) is one of the most
widely used computational models (for an overview, see
Ratcliff et al., 2016) to quantify the evidence-accumulation
processes during decision-making in neuroscience
(Cavanagh et al., 2011; Herz et al., 2017; Shadlen &
Shohamy, 2016), psychology (Hu et al., 2020; D. J. Johnson
et al., 2017; Kutlikova et al., 2023), behavioral economics
(Desai & Krajbich, 2022; Sheng et al., 2020), and psy-
chiatry (Ging-Jehli et al., 2021; Pedersen et al., 2022).

According to the DDM, experimentally observed pairs
of response times and choices arise from a process of

1298700 AMPXXX10.1177/25152459241298700Pan et al.Advances in Methods and Practices in Psychological Science
research-article2025

Corresponding Authors:
Hu Chuan-Peng, School of Psychology, Nanjing Normal University,
Nanjing, China
Email: hu.chuan-peng@nnu.edu.cn

Ru-Yuan Zhang, School of Psychology and Shanghai Mental Health
Center, Shanghai Jiao Tong University, Shanghai, China
Email: ruyuanzhang@sjtu.edu.cn

dockerHDDM: A User-Friendly
Environment for Bayesian Hierarchical
Drift-Diffusion Modeling

Wanke Pan1 , Haiyang Geng2 , Lei Zhang3,4,5,6 , Alexander Fengler7,
Michael J. Frank7, Ru-Yuan Zhang8 , and Hu Chuan-Peng1

1School of Psychology, Nanjing Normal University, Nanjing, China; 2Tianqiao and Chrissy Chen Institute
for Translational Research, Shanghai, China; 3Centre for Human Brain Health, School of Psychology,
University of Birmingham, Birmingham, UK; 4Institute for Mental Health, School of Psychology, University
of Birmingham, Birmingham, UK; 5Centre for Developmental Science, School of Psychology, University
of Birmingham, Birmingham, UK; 6Social, Cognitive and Affective Neuroscience Unit, Department of
Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna,
Austria; 7Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island;
and 8Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai
Jiao Tong University School of Medicine and School of Psychology, Shanghai, China

Abstract
Drift-diffusion models (DDMs) are pivotal in understanding evidence-accumulation processes during decision-making
across psychology, behavioral economics, neuroscience, and psychiatry. Hierarchical DDMs (HDDMs), a Python library
for hierarchical Bayesian estimation of DDMs, has been widely used among researchers, including researchers with
limited coding proficiency, in fitting DDMs and other sequential sampling models. However, issues of compatibility in
installation and lack of support for more recent Bayesian-modeling functionalities pose serious challenges for new users,
limiting broader adaptation and reproducibility of HDDMs. To address these issues, we created dockerHDDM, a user-
friendly computational environment for HDDMs with new features. dockerHDDM brings three improvements: (a) easy
to install once docker is installed, ensuring reproducibility and saving time for researchers; (b) compatible with machines
with Apple chips; (c) seamless integration with ArviZ, a state-of-the-art Bayesian-modeling library. This tutorial serves
as a practical, hands-on guide for researchers to leverage dockerHDDM’s capabilities in conducting efficient Bayesian
hierarchical analysis of DDMs. The notebook presented here and in the docker image will enable researchers with
various programming levels to model their data with HDDMs.

Keywords
HDDM, drift-diffusion models, Bayesian hierarchical modeling, reproducibility, docker, Python, open data,
open materials

Received 4/15/24; Revision accepted 10/21/24

https://us.sagepub.com/en-us/journals-permissions
https://www.psychologicalscience.org/AMPPS
mailto:hu.chuan-peng@nnu.edu.cn
mailto:ruyuanzhang@sjtu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F25152459241298700&domain=pdf&date_stamp=2025-02-13

2	 Pan et al.

stochastic evidence accumulation to a decision boundary
(e.g., Voss et al., 2013; see Figure 1 and the related DDM
glossary in Table 1). This theoretical framework has been

shown not only to correlate robustly with established
neural substrates (Chandrasekaran et al., 2017; Forstmann
et al., 2016) but also to serve as a powerful measurement
tool for examining individual differences across cognitive
tasks, experimental manipulations, and participant popu-
lations (Boag et al., 2024; Donkin & Brown, 2018; Evans
& Wagenmakers, 2020; but see Liu et al., 2023). Despite
its theoretical contributions, the DDM is difficult to apply
to experimental data in practice because the derivation
of inference-relevant quantities (e.g., the likelihood func-
tion) requires a mathematical understanding of the com-
plex stochastic process of evidence accumulation.

Several software packages have been developed to
facilitate the application of DDM (see “Why Use docker
HDDM Among Tools” section), proving particularly ben-
eficial for researchers with limited computational
expertise. Among them, HDDM, a Python library for
hierarchical DDM, is by far the most cited toolbox in the
community (Wiecki et al., 2013; with 996 citations in
Google Scholar as of August 26, 2024). Despite the suc-
cess and popularity of HDDM, it suffers from several
practical issues. First, the installation process of HDDM
is cumbersome, exacerbated by its reliance on PyMC
2.3.8 for Markov chain Monte Carlo (MCMC) sampling,
a package that is no longer supported and may clash

t

Bi
as

 (z
)

 Th
re

sh
ol

d
(a

)

Drift
 Rate (v)

Time

Upper Boundary

Lower Boundary

Fig. 1.  Illustration of the evidence-accumulation process assumed by
the drift-diffusion model (DDM). DDM has four basic parameters: drift
rate (v), decision boundary (a), initial bias (z), and nondecision time
(t). The drift rate (v) is the average speed of evidence accumulation
toward a decision; the decision boundary (a) is the distance between
two decision thresholds, and the evidence needed to make a deci-
sion increase as a increases; the initial bias (z) reflects the starting
point of evidence accumulation; nondecision time (t) is the time not
used for evidence accumulation, for example, stimulus encoding or
motor execution. For a more detailed description of the DDM and its
parameters, see Table 1.

Table 1.  Drift-Diffusion Model Glossary

Term Description

Accumulator A component of the DDM that accumulates evidence for different decision options until a
threshold is reached, triggering a decision.

Random walk A stochastic process that describes a path consisting of a sequence of random steps. It refers to
the modeling of decision-making as a process of accumulating evidence over time.

Diffusion The diffusion refers to the variability in the evidence-accumulation process that represents
random fluctuations in the decision variable.

Optional stopping The concept of stopping the decision-making process at a point chosen by the decision maker,
often when a certain level of confidence or evidence threshold is reached.

Drift rate (v) The average rate of evidence accumulation toward one of the decision boundaries. The more
difficult the task, the less stimulus discrimination and the smaller the drift rate.

Decision boundary (a) The threshold that, when reached by the accumulated evidence, triggers a decision. It
represents the speed-accuracy trade-off or caution, and the higher its value, the higher the
accuracy at the expense of slower response times.

Nondecision time (t) The time taken by processes other than decision-making (e.g., sensory encoding and motor
execution). It simply shifts response time distribution.

Initial bias (z) The initial value of the decision variable, which indicates any initial bias in evidence
accumulation, is also called ‘starting point’ in the literature. The closer it is to a boundary
(1 and 0 correspond to the upper and lower boundaries, respectively), the faster and more
frequent the response.

Drift-rate variability (sv) The variability in the drift-rate parameter across trials. It increases the proportion of slow errors.
Initial bias variability
  (sz)

The across-trial variability in the initial bias parameter in the DDM. It increases the proportion of
fast errors.

Nondecision-time
  variability (st)

The across-trial variability in the nondecision time parameter in the DDM. It simultaneously
increases the probability of both faster and slower responses, resulting in a thicker tail of the
RT distribution.

Note: The terms used here are defined within the framework of the sequential sampling model (Forstmann et al., 2016; Ratcliff et al., 2016),
and some of them, such as diffusion and optional stopping, differ from those used in the mathematical literature. DDM = drift-diffusion
model; RT = reaction/response time.

Advances in Methods and Practices in Psychological Science 8(1)	 3

with the latest computer modules. Second, and for the
same reason, out-of-the-box HDDM is not compatible
with Apple chips, which creates a significant barrier for
Mac users. Third, although HDDM natively centers
around Bayesian methods, it does not conveniently sup-
port all aspects of the evolved standards in Bayesian-
modeling workflows (Ahn et al., 2017; Gelman et al.,
2020; Kruschke, 2021). Significant progress has recently
been made in supporting the principled Bayesian-mod-
eling workflow in easy-to-use tool kits, such as the
Python package ArviZ (Kumar et al., 2019). Bridging
these new capabilities with HDDM facilitates a one-stop
Bayesian-modeling pipeline for experimentalists and
computational modelers interested in applying the DDM
to their experimental data.

To address the above issues, we leveraged the Docker
container technology to create dockerHDDM, a stable
and complete virtualized Python computing environ-
ment that enables out-of-the-box implementations of
Bayesian hierarchical DDMs. dockerHDDM has three
major advantages (Table 2). First, it benefits from the
easy-to-deploy nature of the Docker environment to
avoid compatibility issues. Second, it is compatible with
both Intel and Apple chips. Third, it augments HDDM
with ArviZ, a Python module that enables a wide range
of advanced Bayesian-modeling analyses. We expect
dockerHDDM to provide an easy-to-use environment to
help researchers across various backgrounds efficiently
use DDM in their research.

How to Follow This Tutorial

The primary goal of this article is to present a practical
guide to dockerHDDM for beginners with little modeling
experience. In the tutorial, we start with step-by-step
instructions on how to configure the dockerHDDM envi-
ronment and how to use it in practical data analysis

(Fig. 2). To assist reproducibility and easy application, a
corresponding step-by-step video walk-through is avail-
able on YouTube at https://www.youtube.com/watch?
v=ZU1fbXEuP8s or on OSF at https://osf.io/xz9m2.

In the setup section (top panel in Fig. 2, correspond-
ing to “Install Docker” section in this article), we provide
instructions on how to install Docker. After that, we
demonstrate how to obtain the dockerHDDM image and
how to use this image to access the Jupyter notebook
interface (middle panel in Fig. 2, corresponding to “Pull
dockerHDDm Image” and “Run dockerHDDm Container”
sections). Finally, within a working Jupyter notebook,
we show how to analyze an example data set with dock-
erHDDM in a principled Bayesian workflow (bottom
panel in Fig. 2, corresponding to “Example of Workflow”
section).

Install and use dockerHDDM

Install Docker

Docker serves to create an all-in-one, fast, cross-platform
computing environment. The Docker website provides
easy-to-follow installation instructions (https://docs
.docker.com/get-docker/) and supports Windows,
MacOS, and Linux (see Box 2). Windows users should
ensure their system version is 21H2 (build 19044) or
higher and have either WSL or Hyper-V configured
before installation (see https://docs.docker.com/desk
top/install/windows-install/).

After installing Docker Desktop (or Docker Engine
for Linux users), one can verify the installation by run-
ning the following command in a terminal (Fig. 3). If the
container starts and runs successfully, it will display a
confirmation message and then exit (Fig. 3):

$ docker run hello-world

Pull dockerHDDM image

After ensuring that Docker has been successfully installed
and the Docker engine is running (Fig. 3), you can pull
the dockerHDDM image by simply running the com-
mand in the terminal (see the meaning of each argument
in Fig. 4a):

$ docker pull hcp4715/hddm

or

$ docker pull hcp4715/hddm:latest

This command will pull the latest default version of
dockerHDDM, which corresponds to the image with the

Table 2.  Comparisons Between dockerHDDM and the
Original HDDM Package

HDDM dockerHDDM

Support ArviZa No Yes
  Plotting (e.g., HDI) No Yes
  Diagnosis (e.g., ESS) No Yes
  Model comparison (LOO-CV,
   WAIC)

No Yes

Installation Hard Easy
Parallel processing Hard Easy
Compatibility with Apple chips Hard Easy

Note: HDI = high-density interval; ESS = effective sample size;
LOO-CV = leave-one-out cross-validation; WAIC, widely applicable
information criterion; PPC, posterior predictive checks.
aPlotting, diagnosis, and model comparison are functions of ArviZ,
including HDI, ESS, LOO, WAIC, and PPC.

https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://osf.io/xz9m2
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/

4	 Pan et al.

docker run hello-world

user@DESKTOP:/$ docker pull hcp4715/hddm
user@DESKTOP:/$ docker run -it --rm -p 8888:88
88 -v $(pwd):/home/jovyan/work hcp4715/hddm j
upyter notebook

[C 06:50:52.342 NotebookApp]
 To access the notebook, open this file in a
browser:
 ...
 Copy and paste URL:
 http://127.0.0.1:8888/?token=0ce749eb...

Fig. 2.  dockerHDDM usage flowchart. The code in the figure is for demonstration purposes only. Specific instructions and copyable code
can be found in the following corresponding sections. The top panel describes how to install Docker, corresponding to “Install Docker”;
the middle panel describes how to pull and run dockerHDDM, corresponding to “Pull dockerHDDm Image” and “Run dockerHDDm Con-
tainer”; and the bottom panel shows the workflow in dockerHDDM, corresponding to “Example of Workflow.” A video tutorial is available
at https://www.youtube.com/watch?v=ZU1fbXEuP8s and https://osf.io/xz9m2.

https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://osf.io/xz9m2

Advances in Methods and Practices in Psychological Science 8(1)	 5

Box 1.  Glossary of Terms Used in Bayesian Modeling

Prior, or prior distribution, often referred to as p()θ , is the initial belief that researchers have from pilot data.
Likelihood, or likelihood function, often referred to as p y(|)θ , is the probability of the observed data y

as a function of the specific parameters θ of a chosen statistical model. For example, the Bernoulli function is
the likelihood function for statistically describing coin tossing.

Posterior, or posterior distribution, often referred to as p y(|)θ , refers to the updated beliefs about the
parameters θ after observing the data y, balancing prior knowledge with observed data according to Bayes’s
rule, that is, p y p y p(|) (|) ()θ θ θ∝ .

Markov chain Monte Carlo (MCMC) is a sampling method to infer the posterior distribution by
simulation. The Markov chains (usually multiple MCMC chains are required) are algorithmically constructed so
that their corresponding stationary distribution using MCMC samples matches the posterior distribution of
interest in the limit (Kruschke, 2014; Robert & Casella, 2004). The process of reaching this stationary
distribution is called “MCMC convergence.” These sampled parameter values serve as the approximation to the
posterior distribution and can then be used to obtain empirical estimates of the posterior distribution and
associated summary statistics of interest using Monte Carlo integration. In the literature, a chain (or trace) is
referred to as a collection of samples (or draws). Traces serve as a basis for diagnosing convergence and/or
other potential problems with the procedure in a given application. MCMC is particularly useful for models
with high complexity.

Effective sample size (ESS) is the number of independent samples with the same estimation power as
the N autocorrelated samples from each MCMC chain. ESS is often used to determine whether the number of
draws in MCMC chains is sufficient to guarantee a reliable estimate of uncertainty. An ESS greater than 400
is recommended, with the ESS for all four MCMC chains being 100 (Vehtari et al., 2021). However, the
required ESS should be informed by the statistics one wishes to estimate from the posterior. It is
recommended that an ESS of at least 10,000 is required for reasonably stable estimates of highest density
intervals; for stable estimates of equal-tailed intervals, a lower ESS is sufficient; a smaller ESS may yield
stable estimates of the central tendency, especially if it falls in a high-density region of the distribution
(Kruschke, 2018, 2021).

Gelman-Rubin statistics (R̂) is the ratio of within-chains variability to between-chains variability. Values
close to 1.0 for all parameters and quantities of interest suggest that the MCMC algorithm has sufficiently
converged to stationary distributions. In practice, the maximum R̂ must be less than 1.1 (Annis et al., 2017),
more stringent criteria requires the R̂ values of less than 1.01, and a compromise is 1.05
(A. A. Johnson et al., 2022).

Posterior predictive samples, p y y�|(), simulates new data y� conditional on the posterior distribution
given the observed data y. The simulated data can then be used to check whether the model can be
considered a good fit to the data-generating mechanism by comparing the simulation with the observed data.
This process is often called “posterior predictive checks.”

Leave-one-out cross-validation is a model-evaluation approach in which the model is trained on all
observations except for a single observation yi (where i n= …1 2 3, , , ,), and then used to predict the held-out
observation yi. This procedure is repeated for each of the n observations.

Log predictive density, log p y�|θ(), is an overall summary of a model’s predictive abilities by estimating
the log-likelihood of new data �y given the true parameters θ. However, because both the new data �y and the
true-model parameters θ are typically unavailable in empirical data, the log predictive density is approximated
using the observed data y and the posterior estimates of the parameters θ̂, hence log p y log p y() ()ˆ�| |θ θ≈ . This
estimate, when multiplied by –2, gives the deviance, −2 log p y()ˆ|θ . However, because log p y()ˆ|θ is a biased
estimate of log p y(|)� θ , an adjustment is required to correct the bias.

Log pointwise predictive density, log
S

p y
i

n

i
s

s

S

= =∑ ∑





1 1

1
(|)θ , is the likelihood of each observed data

point yi conditional on the model parameters θs . In practice, this quantity is estimated using samples θs (for
s S= …1 2 3, , , ,) drawn from the posterior distribution.

(continued)

6	 Pan et al.

Expected log pointwise predictive density (ELPPD), E log p yfi

n

post i()
=∑ ()
1

� , is a measure of out-of-

sample predictive performance for new data �yi generated by the true data-generating process. p ypost i()� is the
predictive density for �yi based on the posterior distribution, f is the true underlying model, and E f denotes the
expectation that averages over the true data-generating distribution (Gelman et al., 2014). ELPPD is commonly
the unknown parameters θ in a model before observing data. It can either be formed from existing research or
used to compare the predictive performance of different models because it provides an estimate of how well a
model is expected to perform on new data.

Highest density interval (HDI) is an estimate of a parameter’s credible range in the context of Bayesian
statistics. It encompasses an interval of the posterior distribution in which each point within this interval has a
higher density than points outside of it. For instance, a 95% HDI means that there is a 95% chance that the true
parameter value falls within this range, making it a reliable indicator of parameter uncertainty. HDIs are commonly
used for hypothesis testing regarding effect sizes and comparisons across different conditions or groups.

A region of practical equivalence (ROPE) is a predefined range of parameter values that are considered
practically equivalent to zero, which could be based on existing literature or theoretical reasoning (Kruschke,
2018, 2021). To determine whether a parameter estimate is significantly different from zero, a ROPE might be
set as a range around zero. If the 95% HDI of the parameter lies entirely outside this ROPE, the parameter is
considered credibly different from zero. If the HDI is entirely within the ROPE, the parameter is effectively zero
for practical purposes. Partial overlap suggests that the parameter’s result should be interpreted with caution.
Note that caution should be taken when using the HDI + ROPE method for statistical inference on transformed
parameters because of an inconsistency in transformation properties between ROPE and HDI (Etz et al., 2024).

Bayes’s factor (BF) and Savage-Dickey density ratio (SDDR): BF quantifies the strength of evidence
for one statistical model over another. A value greater than 1 suggests more support for the alternative model
relative to the original model, offering a continuous measure of evidence (Kass & Raftery, 1995). The SDDR
simplifies BF computation for nested models by comparing a parameter’s posterior density at a specific point
(typically zero) to its prior density at the same point. This method is efficient and effective for evaluating
whether a parameter is significantly different from zero (Wagenmakers et al., 2010).

Box 1.  (continued)

Box 2.  Basic Introduction to Docker

Docker is an open-source platform that automates the deployment, scaling, and management of applications.
It achieves this through containerization, a process that packages an application and its dependencies into a
single, portable, and consistent unit, known as a “container image.” Containers ensure that applications run
reliably regardless of the environment (Peikert & Brandmaier, 2021; Wiebels & Moreau, 2021).

Docker uses a client-server architecture in which the Docker client communicates with the Docker daemon,
responsible for building, running, and distributing containers. The core components of Docker are the Docker
Engine, Docker Hub, and Docker Compose. The Docker Engine is the runtime that enables containerization,
and Docker Hub is a cloud-based registry for sharing and managing container images. Docker Compose, on
the other hand, is a tool for defining and running multicontainer Docker applications.

Common Docker Commands:

 � docker pull [image]`: Downloads a Docker image from a registry. For instructions on downloading
the dockerHDDM image, see “Pull dockerHDDm Image.”

 � docker run [image]`: Runs a container from a Docker image. For details on how to start a container
using the dockerHDDM image, see “Run dockerHDDm Container.”

(continued)

tag `1.0.1`. One can also select different tags for
different versions of HDDM (see https://hub.docker
.com/r/hcp4715/hddm/tags). Note that the tutorial in

this article works with the `latest` or `1.0.1` tags,
and it is compatible with 0.8.0, with minor grammar
changes.

https://hub.docker.com/r/hcp4715/hddm/tags
https://hub.docker.com/r/hcp4715/hddm/tags

Advances in Methods and Practices in Psychological Science 8(1)	 7

Box 2.  (continued)

 � docker images`: Lists all Docker images on the local machine. This can be used to check different
versions of the dockerHDDM image.

 � docker commit [container_id] [new_image_name]`: Creates a new image from a container’s
changes. For example, if you modify or install new Python packages in the dockerHDDM container, you
can save these changes as a new image.

 � docker build [dockerfile]`: Builds a Docker image from a Dockerfile in the current directory.
You can customize the dockerHDDM image using the provided Dockerfile.

 � docker push [repository/image:tag]`: Uploads a Docker image to a registry. After logging in,
you can push the saved image to Docker Hub or any other Docker registry.

 � docker rmi [image]`: Removes a Docker image from the local machine. This is useful for cleaning
up unused images.

 � docker save -o [output_file] [image]`: Saves a Docker image to a tar archive file. This is
useful for backing up images or transferring them to another system.

  �̀ docker load -i [input_file]`: Loads a Docker image from a tar archive file. This can be used to
restore or import images from a backup.

Fig. 3.  Command to check Docker installation in terminal. After running the command `docker run hello-world` (highlighted at first line),
the printout shows that Docker has been successfully installed on the system. The schematic interfaces of the terminal on different platforms
are shown: (left) MacOS, (middle) Windows, and (right) Ubuntu.

Run dockerHDDM container

After pulling the Docker image to a local machine, you can
start a computing environment by running the docker-
HDDM image with the command in the terminal (Fig. 4b):

$ docker run -v $(pwd):/home/jovyan/work
-p 8888:8888 -it --rm hcp4715/hddm jupyter
notebook

This command creates a Docker container, which is a
specialized environment encapsulated within the Docker

platform. The `-v` option is used to mount a local
folder into the container’s file system, enabling file
exchange from the host machine. The example code
`$(pwd):/home/jovyan/work` specifies two paths
separated by a colon. The path on the left, denoted by
`$(pwd)`, represents the current working directory on
the host machine, and the path on the right, `/home/
jovyan/work`,1 is the location inside the container
where the folder will be mounted (Fig. 4b). This means
that you can read and write the files from your local
machine in the “work” directory in the browser.

8	 Pan et al.

`$(pwd)` can be replaced with a valid folder path on
your local machine. For example, for a folder named
“ddm_project” on the drive D, it can be mounted with
the following arguments in the respective operating sys-
tems: in Linux, `-v /mnt/d/ddm_project:/home/
jovyan/work`; in Windows, `-v D:\ddm_project:/
home/jovyan/work`; and in MacOS, ̀ -v /Volumes/D/
ddm_project:/home/jovyan/work`. The other argu-
ments in the command are explained in Fig. 4b.

After running the `docker run . . .` command,
a URL appears at the end of the terminal output (Fig. 2,
middle panel). You can copy and paste this URL “http://
127.0.0.1:8888/?token=. . .” into any web browser (e.g.,
Firefox or Chrome) to launch a Jupyter interface based
on the dockerHDDM container. If the URL does not load
properly, check whether port 8888 is being used by
other Docker containers or programs. If so, close
those containers or programs. Alternatively, you may
change the port, for example, use port 7777 (i.e., set

`-p 7777:8888`); in this case, you should replace
the “8888” in the URL to “7777” (e.g., “http://127.0.0.1:7
777/?token=. . .”). You can then open or initialize a Jupy-
ter notebook2 to code, run, and view the output directly.
Note that the `--rm` flag included in the command
means that the dockerHDDM container, along with any
data or newly installed Python modules, will be deleted
when the container stops. However, any files or data
mounted to the container from the `$(pwd)` path will
remain unaffected. This ensures the reproducibility of
the computing environment. If you wish to modify the
computing environment, for example, by installing addi-
tional Python modules, we recommend that you first
read the Docker API before removing `--rm` directly.

In the Jupyter interface, you will find two files and
two folders (Fig. 2, middle). The notebook docker-
HDDM_workflow.ipynb offers a detailed reproduction of
the analyses presented in this article, which we discuss
further in “Example of Workflow.” In contrast, the

pulldocker hcp4715 /hddm :latest

Using docker to execute this command

Pull/download an image from docker hub

Image’s name

Handle of a tag of the image

Docker hub account that maintain the image

a

b

rundocker
hcp4715/hddm:latest jupyter notebook

\

Run a container

-it --rm
8888:8888-p$(pwd):/home/jovyan/work-v

Mount a volume,
localPath:containerPath
Map container port,
hostPost:containerPort
Continue the command
in a new line*

Run container interactively
Clean up containers and
delete files on container exit

The docker image (and its tag)
to run the container

Open jupyter notebook

Fig. 4.  Docker commands to download and run dockerHDDM. (a) Download/pull dockerHDDM
from the Docker hub. The command by default downloads the latest version of `hcp4715/dock
erHDDM` if the image tag is not specified. The CPU architecture (Apple or Intel chips, correspond-
ing to ARM64 and AMD64 architectures, respectively) is automatically recognized when the image
is downloaded. (b) Command to start a container. Note, “\” separates different lines of a command
in Linux and MacOS terminals but not in Windows.

http://127.0.0.1:8888/?token=
http://127.0.0.1:8888/?token=
http://127.0.0.1:7777/?token=
http://127.0.0.1:7777/?token=

Advances in Methods and Practices in Psychological Science 8(1)	 9

notebook dockerHDDM_Quick_View.ipynb provides a
brief overview of the dockerHDDM image’s new features
and an introduction to basic modeling processes. One
folder is “work,” which mounts the local path into the
docker environment. The other folder, “OfficialTutorials,”
contains notebooks that reproduce the official tutorials
available at https://hddm.readthedocs.io/en/latest/tuto
rials.html. Beginners can follow HDDM_Basic_Tutorial.
ipynb to get a basic understanding of HDDM, as dis-
cussed in Wiecki et al. (2013); HDDM_Regression_Stim
coding.ipynb covers more advanced models with regres-
sion, in which parameters can vary based on experimental
conditions and other covariates; Posterior_Predictive_
Checks.ipynb introduces posterior predictive checks
(PPCs), showing how to generate predicted data from
fitted parameter posteriors and how to analyze these pre-
dicted data; LAN_Tutorial.ipynb introduces advanced use
of LAN functions that address the problematic likelihood
of more complicated models based on neural-network
methods (Fengler et al., 2021).

Novel Features of dockerHDDM

The dockerHDDM_Quick_View.ipynb illustrates two
novel features in dockerHDDM (compared with HDDM
installed directly without Docker): parallel computing
for MCMC chains and creating InferenceData data for
ArivZ analyses (as shown in the <Code Block 1>):

<Code Block 1>
```Python
# define a simple model with preloaded 
data
model = hddm.HDDM(data)

# origin model fitting code
# model.sample(500, burn = 100)

# dockerHDDM new model fitting code
model.sample(
  500, burn = 100,
  chains = 4,  # parallel computing for  
    MCMC chains
  return_infdata = True,  # return  
    InferenceData for ArivZ analysis
  sample_prior = True, loglike = True, ppc  
    = True,
  save_name = ‘example’
)
```

For all models defined by methods such as `hddm.
HDDM()` or `hddm.HDDMRegressor()`, the user
can employ the `.sample()` method to run the
MCMC algorithm for model fitting. The original HDDM

provided two main parameters to set the MCMC algo-
rithm; the first parameter was the number of samples
(`500`), and the second was the number of burn-ins
(`burn=100`).3

In dockerHDDM, we included five extra arguments
in `.sample()` method to provide parallel computing
for MCMC chains and create InferenceData.

To preserve compatibility and consistent output with
origin HDDM, the arguments are configured with the fol-
lowing defaults: ̀ return_infdata=False`, ̀ sample_
prior=False`, `loglike=False`, `ppc=False`,
`save_name=None`, and `chains=1`.

The `chains` argument determines the number of
MCMC chains. Using more than two chains triggers mul-
tithreaded parallel computation, which can significantly
reduce the time when multiple chains are needed to
compute model diagnosis index R̂ (see “Model Diagno-
sis”). The number of parallel MCMC chains is limited by
the number of available CPU cores/threads available.
For example, the maximum number of chains for a com-
puter with four cores (eight threads) is eight. Setting the
“chains” argument more than eight may degrade perfor-
mance. Nonetheless, whenever possible, a number of
four chains is commonly used.

The `return_infdata`argument converts HDDM
results into the InferenceData structure,4 accessible via
`model.infdata`, by default set to `False` to main-
tain compatibility with original HDDM output. In addi-
tion, we have included `loglike` for computing and
saving log-likelihood values (see “Model Comparison”),
`ppc` for PPCs (see “PPC”), and ̀ sample_prior=True`
for calculating Savage-Dickey density ratio (Wagenmak-
ers et al., 2010) to approximate Bayes’s factor (BF; see
“Statistical Inference”). When setting ̀ ppc` as ̀ True`,
it defaults to generating 500 predictions for each
observed data, but users can adjust this by adding argu-
ment `n_ppc`. Likewise, when setting `sample_
prior` as `True`, it defaults to sampling 2,000 draws
for each prior parameter, but users can adjust this by
adding argument `n_prior`.

Finally, the ̀ save_name` argument specifies the path
and file name for saving the model and InferenceData,
which is convenient for reusing results. One can load
the model using `model = hddm.load(‘example.
hddm’)` and the InferenceData with `infdata =
az.from_netcdf(‘example.nc’)`.

Example of Workflow

In this section (Fig. 2, bottom panel), we demonstrate
how to use dockerHDDM (i.e., HDDM and ArviZ) to
perform key steps of Bayesian modeling (Gelman et al.,
2020; Martin et al., 2024): model specification and fitting,
model diagnosis, model comparison, PPC, and statistical
inference. The code reproduced in this section can be

https://hddm.readthedocs.io/en/latest/tutorials.html
https://hddm.readthedocs.io/en/latest/tutorials.html

10	 Pan et al.

found in dockerHDDM_Workflow.ipynb in the docker-
HDDM environment.

Example Data

For convenience, we use the data from Cavanagh et al.
(2011), which is built within HDDM, as an example to
demonstrate how to implement the modeling workflow.
This data set contains response time and choice data from
14 Parkinson’s patients (see Table 3). In the experiment,
participants were asked to choose between two options
associated with either high or low reward values (i.e.,
reward probabilities in typical reinforcement-learning
tasks). The relative value differences between the two

options define two levels of conflict: high conflict for
low-low and high-high trials (“HC” in variable “conf”) and
low conflict for low-high trials (“LC” in variable “conf”).

Note that HDDM requires the inclusion of three col-
umns of variables, “subj_idx,” “rt,” and “response,” to con-
struct the hierarchical model. This means that when
analyzing your own data, these three columns of variables
must appear in the data set with identical column names.
In addition, the unit of “rt” must be seconds, and “response”
is coded as 1 for the upper boundary of the corresponding
choice and 0 for the lower boundary (for more details, see
https://hddm.readthedocs.io/en/latest/howto.html).

Model Specification

As a demonstration of model specification, we test an
example question: Is there an effect of conflict levels on
drift rate (Wiecki et al., 2013). To answer the question, we
constructed three computational models (see Table 4).

Model 0 served as the baseline without considering
the effect of conflict level on the model parameters. The
model contains the seven parameters, referred to as the
full DDM, including the decision boundary (a), drift rate
(v), nondecision time (t), decision bias (z), and sv , st ,
and sz , which indicate the trial-by-trial variations of v ,
t , and z (., ; & ,)Boehm et al Ratcliff Tuerlinckx2018 2002 .

By default, HDDM considers the hierarchical-model-
ing approach that includes parameters at both the indi-
vidual and the group levels (see Box 3). Model 0 has 11
population-level parameters, including the means and
the standard deviations for the four basic parameters
(a/v/t/z) and three parameters (sv/st/sz) for the inter-
trial variations. At the individual level, each subject also

Table 3.  Example Data Set From Cavanagh et al. (2011)

subj_idx rt response conf

0 1.21 1.0 HC
0 1.63 1.0 LC
0 1.03 1.0 HC
0 2.77 1.0 LC
0 1.14 0.0 HC

Note: The data structure required for HDDM is long-format data, where
each row represents one trial. “subj_idx is” the subject index, “rt” is
the response time (in seconds), and “response” in this case represents
the accuracy, where 1 is correct and 0 is incorrect. These three
columns of data are mandatory when using HDDM and must be kept
consistent with the column names and the units (rt, seconds). “conf” is
an optional variable, corresponding to the conflict level, where “HC”
denotes high conflict and “LC” denotes low conflict. “conf” is not a
mandatory variable or column, meaning that different factor names and
levels can be used depending on the experimental design. In addition,
multiple variables may be maintained in the data, which may be
categorical or continuous.

Table 4.  Models Used in This Tutorial

Models Describe
HDDM functions for defining a model (`df`

is the data from Cavanagh et al., 2011) n params

Model 0 Baseline hddm.HDDM(df, include=[‘a’, ‘v’,
‘t’, ‘z’, ‘sv’, ‘sz’, ‘st’])

67

Model 1 Varying drift rates across
conditions

hddm.HDDM(df, include=[‘a’, ‘v’,
‘t’, ’z’, ‘sv’, ‘st’, ‘sz’],
depends_on={‘v’: ‘conf’})

82

Model 2 Varying within-subjects drift
rates across conditions

hddm.HDDMRegressor(df, “v ~ 1
+ C(conf, Treatment(‘LC’))”,
group_only_regressors=False,
keep_regressor_trace=True,
include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’,
‘st’, ‘sz’])

83

Note: `hddm.HDDM()` is the default function for constructing a hierarchical drift-diffusion model. The `include`
argument allows the addition of free parameters, which are fixed by default. The `depends_on` argument specifies a
parameter (e.g., v) that depends on a categorical independent variable (e.g., ‘conf’). The `hddm.HDDMRegressor()`
is an HDDM function that includes effects of conditions in a linear regression fashion. The `keep_regressor_trace`
argument allows a trace of the regressor to be kept, which is needed for posterior predictive checks. By default, the
hierarchical regression allows only the intercept to vary across participants, and the slope is fixed at the population
level. The `group_only_regressors = FALSE` argument additionally estimates the slopes at the individual level in
the regression model.

https://hddm.readthedocs.io/en/latest/howto.html

Advances in Methods and Practices in Psychological Science 8(1)	 11

has a full set of four basic parameters, yielding a total
of 56 14 4= × parameters. Thus, Model 0 has 11 56 67+ =
free parameters.

Model 1 allows the drift rate to vary as a function of
the conflict levels (i.e., ̀ depends_on={‘v’: ‘conf’}`
in HDDM). Specifically, Model 1 sets two drift-rate vari-
ables each for low- and high-conflict levels at both the
population and individual levels, respectively. Thus,
Model 1 has 12 population-level parameters: the means
and standard deviations for a , t , and z ; two means
(“v_(LC)” and “v_(HC)”) and one standard deviation for
v ; and three intertrial variability parameters (sv/st/sz).
Likewise, at the individual level, there are 5 (vLC/vHC /t/z/
a) × 14 (subjects) = 70 individual-level parameters. Thus,
Model 1 has a total of 82 free parameters.

Note that Model 1 assumes complete independence
between high and low levels of conflict within subjects.
This assumption may be inappropriate because it is
likely that a person who responded relatively quickly in
the “LC” condition will also respond relatively quickly
in the “HC” condition and vice versa. For more detailed
differences between Model 1 and Model 2, see Box 3.

Model 2 was constructed to include correlations
between drift rates across conflicting levels. In Model 2,

we use a hierarchical regression model with `hddm.
HDDMRegressor()` by using the formula `v ~ 1 +
C(conf, Treatment(‘LC’))` (see Box 3). This for-
mulation automatically assigns two free parameters, the
intercept and slope, to each subject. Thus, there are
5 14 70× = individual-level parameters in Model 2.
Accordingly, Model 2 has four parameters for v: “v_Inter-
cept” and “v_Intercept_std” are the mean and standard
deviation of the intercept, and “v_C(conf)[T.HC]” and
“v_C(conf)[T.HC]_std” are the mean and standard devia-
tion of the slope. Therefore, Model 2 has 13 population-
level parameters: the means and standard deviations for
a , t , and z ; the means and standard deviations of the
slope and the intercept of the regression for v ; and three
intertrial variability parameters (sv/st/sz). Taken together,
Model 2 has a total of 13 + 70 = 83 free parameters.

Model fitting

The defined HDDM model allows the MCMC algorithm
to be run using the `.sample()` method for model
fitting and parameter estimation. The definition and fit-
ting of Model 2 are used here as an example (see <Code
Block 2>):

Box 3.  Parameters in Hierarchical Drift-Diffusion Models

HDDM employs hierarchical Bayesian modeling by default, where each participant’s free parameters are sampled
from population-level distributions (Wiecki et al., 2013). Taking full drift-diffusion model (DDM; Model 0) as an
example, nondecision time p()θ is assumed to be drawn from a normal distribution: θ, where p y(|)θ and y are
the mean and standard deviation of the population-level normal distribution of nondecision time t. Likewise, θ/
p y(|)θ /θ and y/p y p y p(|) (|) ()θ θ θ∝ /R̂ are the means and standard deviations for the other three parameters,
respectively. In addition, three free parameters R̂/p y y()�| / �y indicate the trial-by-trial variability of nondecision
time (y), drift rate (yi), and initial bias (i n= …1 2 3, , ,... ,), which are estimated only at the population level.

(continued)

Note: The hierarchical structure of the full DDM in HDDM. The parameters inside and
outside the rectangle are subject and population level parameters, respectively. p i/ are
the indices of participants (p P= 1 2, , ...,) and trials (i N= …1 2, , .), where xi p, is the data
(choice/response time) of the ith trial in the pth subject.

Full DDM: hddm.HDDM(data, include=[‘z’, ‘sv’, ‘sz’, ‘st’])

µ
ν

νp sν

st

sz

σ
ν

µt

tp
zpap

µz σtσz
µ

a
σ

a

Xi,p

i = 1, …, Npp = 1, …, P

12	 Pan et al.

Consequently, there are a total of 11 population-level parameters. At the subject level, subjects have their
own estimate of the parameter of a, v, t, z, leading to a total of yi subject-level parameters. Thus, in the full
DDM, the number of parameters is 11 plus log p y()�|θ .

HDDM provides two types of priors: weakly informative priors and noninformative priors. By default,
dockerHDDM uses weakly informative priors as summarized in the table below (Wiecki et al., 2013). The default
informative priors are suitable for most perceptual tasks. However, for tasks with longer response times, it is
recommended to use noninformative priors. In this case, one has to set the parameter `informative=False`
when defining the model, for example, `m = hddm.HDDM(data, informative=False)`.

HDDM also allows parameters to vary with variables by integrating hierarchical linear regression models
(also called “linear mixed models” or “multilevel models”). Specifically, the `hddm.HDDMRegressor()`
function allows any or all of the four parameters of DDM (a, v, t, z) to be modeled as a function of
experimental conditions or other variables (e.g., EEG signal). In HDDM, the regression models are defined
using the Python package patsy (see https://patsy.readthedocs.io/en/latest/quickstart.html), which uses the
same syntax for defining regression functions as in other commonly used statistical packages. For example, in
Model 2 in the main text, we used the expression `v ~ 1 + C(conf, Treatment(‘LC’))`, where the term
to the left of “~” is the dependent variable and the term to the right of “~” is the regression equation. The term
‘1’ refers to the intercept, which corresponds to the variable �y in the output. The term ‘C(conf,
Treatment(‘LC’))’ indicates the slope coefficient, which corresponds to the variable θ. As in other hierarchical
regression models, both the intercept and the slope can be estimated at the population level and the subject
level (referred to as “fixed effects” and “random effects” or “varying effects,” respectively; D. J. Johnson et al.,
2017; Pedersen & Frank, 2020; Wiecki et al., 2013), depending on how the model is specified. In `hddm.
HDDMRegressor()`, the default is hierarchical model with random intercept but no random slope. We need
to set `group_only_regressors=False` to include the random slope (as we did in Model 2).

Although both the `depends_on` argument and the `HDDMRegressor` function allow parameters to vary
with discrete variables (e.g., conflict levels), there is an important difference between them. The `depends_
on` argument defines the parameter split by condition. Specifically, the means of the parameters under each
condition are derived from a share prior, whereas the variability of the parameters is consistent across
conditions. The `HDDMRegressor` function defines the relation between parameters and condition by a
linear model specification, which means the intercept and slope in the linear regression both have their own
priors. In a word, `depends_on` is unable to use within-subjects effects because each subject’s condition is
derived from the population prior, whereas `HDDMRegressor` allows subjects to have their own intercept,
which allows for the estimation of within-subjects variation across conditions. Thus, the choice of model
definition is relevant to the assumptions made about the relationship between parameters and the
experimental conditions. For more details, see Wiecki et al. (2013).

 

DDM parameters’ informative prior

mv~ (,)N 2 3 σv ~ ()HN 2 v p v v~ (,)N µ σ2

ma~ (. , .)G 1 5 0 75 σa ~ ()HN 2 ap a a~ (,)G µ σ2

mz invlogit~ ((. , .))N 0 5 0 5 σz ~ (.)HN 0 05 z p z z~ ,N ()µ σ2

mt~ (. , .)G 0 4 0 2 σt ~ ()HN 1 t p t t~ (,)N µ σ2

sv ~ ()HN 2 st ~ (.)HN 0 3 sz ~ (,)B 1 3

Note: Table extracted and refined from Wiecki et al. (2013). N represents a
normal distribution parameterized by the mean (m) and standard deviation (σ).
HN represents a half-normal distribution, which is a positive-only distribution
parameterized by the standard deviation. G represents a gamma distribution,
parameterized by the mean (m) and the rate (σ). B represents a beta
distribution, parameterized by alpha and beta. The term invlogit represents
the inverse logit function also known as the logistic function.

Box 3.  (continued)

https://patsy.readthedocs.io/en/latest/quickstart.html

Advances in Methods and Practices in Psychological Science 8(1)	 13

<Code Block 2>
```Python
# define a model by hddm.HDDMRegressor
m2 = hddm.HDDMRegressor(
    df, ‘v ~ C(conf, Treatment(‘LC’))’,
    group_only_regressors = False,
    keep_regressor_trace = True,
    include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’,  
      ‘st’, ‘sz’])
# fitting model and return InferenceData
m2_infdata = m2.sample(
    10000, chains = 4,
    save_name = ‘m2’, return_infdata = True,
    sample_prior = True, loglike = True,  
      ppc = True)
```

To accurately estimate parameters and ensure con-
vergence in hierarchical modeling, we set up four MCMC
chains of 10,000 samples with 5,000 burn-ins (i.e., a total
of 20,000 samples for each parameter). For the more
detailed settings and arguments description, see “Novel
Features of dockerHDDM.” With the new functionality
introduced by dockerHDDM, we can calculate the log-
likelihood of the model and generate posterior predic-
tions after model fitting. Furthermore, the output of the
model fitting can be converted into InferenceData, `m2_
infdata`, for subsequent analyses, as described in
“Novel Features of dockerHDDM.”

We emphasize that model fitting is demanding in
terms of computational resources and memory. For
example, in our tests with the Apple M1 chip, Intel
i7-10700 CPU, and AMD Ryzen 9-5900HX, model fitting
took around 2 hr to 3 hr for 10,000 samples. Conse-
quently, fitting three models took about 6 hr to 9 hr, and
memory usage ranged between 8 GB and 12 GB. In
addition, if pointwise likelihood calculations (i.e., with
the argument `loglike=True`) and posterior predic-
tive data generation (i.e., with the argument ̀ ppc=True`)
are enabled, an extra 1 hr to 3 hr are needed for each
model. More important, the memory consumption could
escalate to 20 GB to 30 GB because pointwise likelihood
and posterior predictive data generation will result in a
large number of new data. See discussion for recom-
mendations to improve efficiency.

Model diagnosis

In Bayesian inference, it is crucial to ensure the conver-
gence of MCMC chains. With ArivZ, dockerHDDM sup-
ports both visual inspection and quantitative convergence
checks (Martin et al., 2024, Chapter 10).

`az.plot_trace()` can be used to visualize the
posterior distributions of parameters (i.e., trace plots of
the MCMC, Fig. 5a).

The Gelman-Rubin statistics (R̂), and effective sample
size (ESS) provide quantitative measures (see Box 1).

`az.rhat()`computes R̂, which should be close to
1 for good convergence; values below 1.01 are typically
recommended (Gelman & Rubin, 1992).

`az.ess()` calculates ESS, a measure of the preci-
sion of posterior estimates. If the ESS-bulk is over 400
(see Box 1), the distribution’s center is well resolved,
and we should ensure high ESS across all regions of the
parameter space (Martin et al., 2024; Vehtari et al., 2021).

The latter two methods are covered by ArviZ’s `az.
summary()` (Fig. 5b).

Model comparison

Upon verifying chain convergence, we proceed with
model comparison to identify the best-fitting model. The
evaluation metric provided in the original HDDM is devi-
ance information criterion (Spiegelhalter et al., 2002). We
include two more methods in dockerHDDM: widely
applicable information criterion (WAIC; Watanabe, 2010)
and Pareto-smoothed importance sampling leave-one-out
cross-validation (PSIS-LOO-CV; Vehtari et al., 2017).
These methods comprehensively integrate posterior sam-
ples for model comparison and evaluation (see Box 4).

For the demonstration, we compared three models
across all three evaluation metrics (lower value is bet-
ter).5 As shown in Table 5, Model 2 exhibits the lowest
values on all three metrics, indicating it is the best
model. The results of model comparison revealed that
Models 1 and 2 are much better than the baseline Model
0, suggesting that experimental conflict conditions have
a substantial effect on drift rates. Moreover, Model 2 is
slightly better than Model 1, suggesting that regression
model may suit the data better. Nevertheless, the simi-
larities between Model 1 and Model 2 suggest that both
models fit the data adequately in this case.

Note that WAIC and PSIS-LOO-CV require the point-
wise log-likelihood of each data point given a posterior
sample of parameters, which must be computed using
the likelihood function and posterior trace (see Box 1).
This variable is not directly provided in the HDDM
object and must be customized to be calculated via the
likelihood function and posterior trace.

In dockerHDDM, the pointwise log-likelihood can
be computed at the sampling and fitting stage, via `m.
sample(. . . , retutn_infdata = True, loglike =
True)` (see <Code Block 2>), or after the model has
been sampled and fitted, by ̀ m.to_infdata(loglike =
True)`. Both ways return InferenceData, allowing users
to immediately compute WAIC and PSIS-LOO-CV. After
that, the evaluation metrics for each model’s Inference-
Data are available using ArviZ’s ̀ compare` method (see
<Code Block 3>), which returns the results of WAIC for
the argument `ic=“waic”` or PSIS-LOO-CV for
`ic=“loo”`.

14	 Pan et al.

b

a

Fig. 5.  Model diagnosis. (a) Visualization of the traces of all chains using `az.plot_trace()`, with the argument `var_names` set
to focus on the parameter “v_Intercept” as an example. `compact=False` and `legend=True` ensured that the individual traces of
each chain would be visible. The Markov chain Monte Carlo (MCMC) chains are valid and reliable when they fluctuate around a value
and different chains are indistinguishable from each other, a scenario often referred to as a “caterpillar” shape. (b) Output of `az.
summary()`, which includes the mean and standard deviation of the Monte Carlo standard error (MCSE), the effective sample sizes
(bulk-ESS and tail-ESS), and R̂. Note that the summary data frame has been sorted by R̂ so that we can easily compare the minimum
and maximum values of R̂.

Advances in Methods and Practices in Psychological Science 8(1)	 15

Box 4.  Linking Deviance Information Criterion, Widely Applicable Information Criterion, and Pareto-Smoothed
Importance Sampling Leave-One-Out Cross-Validation to Akaike Information Criterion

The deviance information criterion (DIC), widely applicable information criterion (WAIC), and Pareto-
smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) are criteria founded on the
concept of out-of-sample predictive accuracy, that is, the accuracy of using the fitted model to predict new
data generated by the assumed data-generating process. Predictive accuracy is often encapsulated by the log
predictive density (Box 1). However, the log predictive density approximated using the observed data and the
posterior estimates of parameters is biased, and an adjustment is required to correct the bias. Thus, the key
difference between DIC, WAIC, and PSIS-LOO-CV lies in the difference between the two terms of log
predicted density and corrected bias (see the table below).

DIC uses the Bayesian posterior means for estimating log predictive density and includes an adjustment
based on the effective number of parameters (�y). It is particularly suited for hierarchical models, offering an
improved estimate of predictive density (Spiegelhalter et al., 2002).

WAIC further refines DIC, evaluating the log predictive density across the entire posterior and correcting
bias via the variability of log predictive density (θ). This adjustment is crucial for measuring model robustness
and guarding against overfitting (Watanabe, 2010). Both DIC and WAIC rely on estimating the effective number
of parameters, but DIC assumes a Gaussian distribution for the likelihood, which simplifies the calculation
(Lunn et al., 2012). In contrast, WAIC does not rely on this strict assumption and uses the full posterior
distribution, offering greater flexibility and accuracy but at a higher computational complexity (Gelman et al.,
2014).

PSIS-LOO-CV estimates the predictive density by simulating the leave-one-out cross-validation, which by
definition is the out-of-sample predictive accuracy, so bias correction is no longer needed for PSIS-LOO-CV.
For more details on these three indices, see Gelman et al. (2014) and Vehtari et al. (2017).

 

Predictive accuracy Adjustment Formula

AIC log p y mle(|)θ̂ k − −2 ((|))ˆlog p y kθmle

DIC log p y Bayes(|)θ� PDIC − −()2 (|)log p y PBayes DICθ�
WAIC lpd� p̂WAIC − −2 ()ˆlpd pWAIC

�
PSIS-LOO-CV elpd psis loo

�
− na − −2elpdpsis loo

Note: lpd� = computed log pointwise predictive density, see Glossary for details; elpd psis loo
�

− =
expected log pointwise predictive density for a new dataset based on PSIS-LOO method; k = the
count of model parameters; PDIC = the DIC’s adjustment for the effective number of parameters
(Spiegelhalter et al., 2002); p̂WAIC = the WAIC’s approach to adjusting the effective number of
parameters (Watanabe, 2010). DIC = deviance information criterion; WAIC = widely applicable
information criterion; PSIS-LOO-CV = Pareto-smoothed importance sampling leave-one-out cross-
validation.

<Code Block 3>
```Python
compare_dict = {
    ‘m0’: m0_infdata,
    ‘m1’: m1_infdata,
    ‘m2’: m2_infdata
}
az.compare(compare_dict, ic = ‘loo’)
```

Finally, we note that the model-comparison metrics allow
only a relative ranking of alternatives. To assess the absolute
goodness of fit of the model, we recommend performing

the PPC, as discussed in the next section, alongside the
diagnostic information provided by LOO and WAIC (see
Martin et al., 2024, Chapter 5; Vehtari et al., 2017).

PPC

In addition to model comparison, which assesses relative
performance, the PPC evaluates how well predictive data
generated from posterior samples of parameters align
with the actual data. PPC is crucial because model com-
parison evaluates only the “least worst” model, but this
model may not necessarily account for the data very well
(see Martin et al., 2024, Chapter 5).

16	 Pan et al.

Table 5.  Model Comparison With Different Criteria

Ranka DIC PSIS-LOO-CV WAIC

1 m2 (10,654.89) m2 (10,646.25) m2 (10,646.20)
2 m1 (10,655.24) m1 (10,647.21) m1 (10,647.15)
3 m0 (10,835.24) m0 (10,824.93) m0 (10,824.89)

Note: DIC = deviance information criterion; PSIS-LOO-CV = Pareto-
smoothed importance sampling leave-one-out cross-validation; WAIC
widely applicable information criterion; m0 = Model 0; m1 = Model 1;
m2 = Model 2.
aRank is ranging from the best model to the worst.

−5 0 5 10 −10 −5 0 5 10−5 0 5 10 −15 −10 −5 0 5 10

−10 −5 0 5 10 −10−15 −5 0 5 10 −10 −5 0 5 10 −5 0 5 10

rt / rt
3

rt / rt
11

rt / rt
3

rt / rt
11

rt / rt
LC

rt / rt
HC

rt / rt
LC

rt / rt
HC

Posterior Predictive Observed Posterior Predictive Mean

a

b

Fig. 6.  Posterior predictive check plot `az.plot_ppc()` for Model 0 “m0” and Model 2 “m2.” Solid black lines are the density plot of
the observed response time (RT) data; blue lines are the posterior predictive samples; each line represents the predicted RT distribution
based on one posterior predictive sample; yellow dashed lines represent the mean of all predicted RT distributions across all posterior
predictive samples. (a) Results of the comparison between the two models (m0 vs. m2) at the individual level (Subjects 3 and 11 as an
example). (b) Results of the comparison at the condition level (i.e., “LC” represents lower conflict, and “HC” represents higher conflict).
All plots in the left column are for m0, and all plots in the right column are for m2. Note that the argument `coords` specifies the
posterior-predictive-check level (individual or group level) that should be preprocessed before plotting. `num_pp_samples` is used to
set the number of predictive data required for plotting.

synthetic data from Model 2 match more closely the
actual data compared with the baseline Model 0, and
this difference becomes apparent when examining PPC
at the individual level (Fig. 6a) and condition level (Fig.
6b). Other approaches for PPCs can be used to quantify
accordance between data and model across quantiles of
the response time (RT) distribution, for example, using
Bayesian predictive versions of quantile probability plots
(Frank et al., 2015; Ging-Jehli et al., 2021), and example
code in HDDM is available on request.

Statistical inference

A final step in Bayesian modeling is to draw statistical
inferences from the posterior parameter distributions in

ArviZ offers convenient visualization tools for inspect-
ing PPC (Kumar et al., 2019). The function `az.plot_
ppc()` is helpful to visualize PPC at the individual or
condition level (Fig. 6). In the demonstration, the

Advances in Methods and Practices in Psychological Science 8(1)	 17

the best-fitting model. In our example, we test the
hypothesis of whether drift rates significantly differ
between HC and LC conditions based on Model2 (“m2”
in the Notebook). This hypothesis is tested using the
posterior samples of the regression coefficient in “m2,”
which has a variable name “v_C(conf, Treatment(‘LC’))
[T.HC]”.

Note that there are several acceptable methods for
Bayesian hypothesis testing, such as BFs (Boehm et al.,
2023; Wagenmakers et al., 2010), maximum a posteriori
based p value (Mills, 2018), directional probabilities
(Makowski et al., 2019), and the full Bayesian signifi-
cance test (Kelter, 2022). In cognitive science and psy-
chology, although BFs are often advocated as a Bayesian
alternative to frequentist p values (Kelter, 2021; van de
Schoot et al., 2017; Wagenmakers et al., 2010), debate
remains about which Bayesian measures should be used
in which settings of scientific hypothesis testing (Kelter,
2023; Makowski et al., 2019). Therefore, it is useful to
consider various Bayesian hypothesis-testing methods
depending on the study objectives and design (Kelter,
2023; Kruschke, 2021; Makowski et al., 2019).

Here, we demonstrate Bayesian inference using
an approach that combines the approach combining
highest density interval (HDI) and the region of practical

equivalence (ROPE; Kruschke, 2018; see Box 1). In addi-
tion, we provide methods for calculating BFs in the
Appendix.

We define a ROPE of [–0.2, 0.2] to represent values
practically equivalent to zero6 and use the `plot_pos-
terior()` function from ArviZ to implement the ROPE
test. By comparing the 95% HDI of the regression coef-
ficient to this ROPE, we find that the HDI falls com-
pletely outside the ROPE (Fig. 7a), suggesting that the
drift rate is higher in the LC condition than the HC
condition (Fig. 7b).

Therefore, considering the results from various aspects
(model comparison, PPC, and posterior inference),
we conclude that the model that takes into account
the influence of conflict level on drift rate performs the
best. Moreover, HC affects the cognitive process of
decision-making by impeding the speed of evidence
accumulation.

Discussion

In this tutorial, we focus on an easy-to-use computa-
tional environment for HDDM, including installation of
the tool, its features, and case applications. Although
some conceptual discussions have been addressed in

0.8 0.6 0.4 0.2 0.0 0.2

−0.67 −0.42

mean = −0.54

0.0% in ROPE

95% HDI
−0.2 0.2

v_C(conf, Treatment('LC'))[T.HC]

= −

% in RO

95% HD

1.50

1.25

1.00

0.75

0.50

0.25

0.00

−0.25

−0.50

v_LC v_HC

a b

Fig. 7.  (a) Statistical inference of parameters. The high-density interval (HDI; black line and texts) is compared with the region of
practical equivalence (ROPE; red line and text). `var_names` argument can be used to select both group-level and individual-level
parameters for analysis. `hdi_prob` argument specifies the probability of the HDI, typically set at 0.95 to correspond to a 95% con-
fidence interval. `rope` defines the limitations of ROPE, which is a range considered to be equivalent to the null hypothesis or a
reference value for the parameter. The results show no overlap between the 95% HDI and the ROPE, indicating that the parameter is
credibly different from zero. (b) Violin plot of parameter posteriors at two conflict levels. The black line is the 95% HDI, and the white
dot is the mean. The drift rate is lower in high-conflict (HC) conditions than in low-conflict (LC) conditions.

18	 Pan et al.

other articles (Boag et al., 2024; Shinn et al., 2020; Voss
et al., 2013), we nevertheless discuss some relevant
issues below.

Why use dockerHDDM among tools?

Inference for the DDM can be implemented via multiple
software/packages, such as fast-DM (Voss & Voss, 2007),
flexDDM (LaFollette et al., 2024), rtdists (Singmann et al.,
2022), EZ-DDM (Wagenmakers et al., 2007), and pyDDM
(Shinn et al., 2020). For more details on tool and algorithm
comparisons, see Shinn et al. (2020). Although all the
above tools are estimated in a frequency framework and
fit data at the individual-participant level, HDDM takes the
Bayesian approach and estimates model parameters at
both the individual and group levels (i.e., the hierarchical-
model or multilevel-model approach; see Wiecki et al.,
2013). Tools that also allow the Bayesian hierarchical
modeling approach of DDM include brms based on RStan
(Henrich et al., 2023), the Wiener module in JAGS
(Wabersich & Vandekerckhove, 2014), EMC2 (Stevenson
et al., 2024), and hBayesDM (Ahn et al., 2017). For com-
parison between these tools and HDDM, see Table 6.

HDDM stands out for its ease of use, enabling users
to construct and fit basic models with just a few lines of
code. It facilitates the definition of complex mixed-
effects models without the need for prior specifications,
making it more accessible for beginners. Although brms
and EMC2 also define mixed-effects models well, they
necessitate users to manually define prior distributions
for random effects and covariance structures. In addition,
RStan and JAGS require expertise in linear model repa-
rameterization. The absence of this expertise may result
in model-fitting failures or biased estimates. On the other
hand, the simplicity of HDDM comes at the cost of flex-
ibility because it restricts users to the default priors (see
Box 3) and does not allow for customization. However,
the weakly informative prior implemented in HDDM was
based on previous meta-analyses of published results

(Matzke & Wagenmakers, 2009) and applicable to typical
cognitive experiments.

Another advantage of HDDM is its support for diverse
accumulation models, including models with collapsing
boundaries and those integrated with reinforcement
learning, called “RLDDM” (Fengler et al., 2022; Pedersen
& Frank, 2020; Pedersen et al., 2017). In addition, the
latest version of HDDM provides many likelihood-free
models, broadening its applications. For instance, its
integration with neural networks, such as the LANs (like-
lihood approximation networks; Fengler et al., 2021),
has greatly enhanced the efficiency of model design and
development.

A notable limitation of dockerHDDM is its lack of
integration with the most advanced parameter-estimation
techniques. For instance, its successors, HSSM and EMC2,
have begun incorporating advanced MCMC methods.
Moreover, innovative neural-network approaches, such
as LANs (Fengler et al., 2021), MNLE (Boelts et al., 2022),
and Bayesflow (Radev et al., 2022), have the potential
to significantly enhance these estimation procedures.
However, the mastery of these cutting-edge techniques
requires a higher level of expertise to prevent misuse.

Consequently, we propose that the mission of dock-
erHDDM should be to streamline operations and lower
the barrier to entry, facilitating analogical learning and,
ultimately, preparing users for the transition to the more
sophisticated methods.

Whether to include parameters’
intertrial variability?

As a demonstration, we used the seven-parameter full
DDM. If a user wishes to fit only the four-parameter model,
the unnecessary parameters can be removed from the
include argument, for example, `include=[‘a’, ‘v’,
‘t’, ‘z’]`. In contrast, the full model, which integrates
trial-by-trial variability, is known for its robustness in fitting
various data sets and accommodating extreme response

Table 6.  Tools Comparison for Modeling Hierarchical DDM

(docker)HDDM brms/RStan/hBayesDM JAGS EMC2

Language Python R R R
MCMC Algorithm Metropolis-Hastings NUTS Gibbs sampling Particle Metropolis
Support models DDM, full DDM,

RLDDM, collapsing
boundary variants, etc.

DDM, full DDM DDM DDM, LBA, RDM, etc.

Custom prior No Yes Yes Yes
Linear mixed extension Yes Yes Yes Yes
Likelihood-free Yes No No No

Note: DDM = drift-diffusion model; MCMC = Markov chain Monte Carlo; RLDDM = reinforcement learning drift diffusion model; LBA = linear
ballistic accumulator; RDM = racing diffusion model.

Advances in Methods and Practices in Psychological Science 8(1)	 19

times, including fast and slow errors (Schubert et al., 2017).
However, Lerche and Voss (2016) argued that excluding
trial-by-trial parameters can enhance the fit and recovery
of fundamental parameters.

Consequently, the choice to include trial-by-trial vari-
ability requires a delicate balance between the predic-
tion and complexity of the model and the specific
requirements of the data. Given the extensive data
requirements for inferring across-trial variability, our
stance is to cautiously include across-trial variability in
the model for a more robust fit and more precise infer-
ence of the basic parameters (see similar discussion in
Boag et al., 2024). For instance, because the variability
of the nondecision time tends to be easily recovered
(e.g., the result of the parameter recovery in Appendix
Figure S2), it may be prudent to include only this param-
eter but not the other variability parameters by default.
Nevertheless, when the data set is substantial and the
research objective prioritizes the analysis of specific
response-time patterns, such as fast or slow errors, the
selective integration (the parameter variability of drift
and start point; also see Table 1) of these parameters
may be warranted. We recommend reading the work by
Boehm et al. (2018), which offers expert advice and
recommendations on estimating across-trial variability
parameters.

Data quantity and quality for fitting
the DDM

Both the number of subjects and the number of trials
should be considered. Because of the hierarchical nature
of the model, hierarchical models typically require fewer
trials than nonhierarchical models (Alexandrowicz &
Gula, 2020; Wiecki et al., 2013). In general, 12 subjects
are sufficient to obtain stable results (Wiecki et al., 2013),
but we recommend collecting data from more than 20
subjects for a more robust fit. However, the number of
sufficient trials varies depending on the parameters of
interest. For the basic four-parameter model, the number
of trials has a small effect on parameter estimates
(Alexandrowicz & Gula, 2020). Twenty trials appears to
be the minimum standard, and more than 50 trials tend
to produce robust results (Wiecki et al., 2013). Estimates
of t and z tend to be superior to those of a and v . To
obtain more accurate estimates of v , a number of trials
greater than 100 is recommended (Alexandrowicz &
Gula, 2020). For parameters such as sv , st, and sz, a large
number of trials are required for estimation, preferably
more than 120 trials (Wiecki et al., 2013). Recent dis-
course has emphasized that the determination of the
number of subjects and trials should be aligned with
considerations of experimental design, desired target
effects, and parameter recovery simulations (Boag et al.,

2024). For further empirical guidelines, see Boehm et al.
(2018) and Lerche and Voss (2017).

Note that parameter estimation can be affected by
extreme values, such as very fast response times. HDDM
addresses this issue by assuming a mixture model in
which a proportion of the response times are from a
uniform distribution (Ratcliff & Tuerlinckx, 2002; Wiecki
et al., 2013). The proportion of response times is con-
trolled by the parameter `p_outlier`, which is set to
0.05 by default. This approach helps mitigate the effect
of extreme values and ensures a more robust parameter
estimation.

Finally, it is essential to conduct PPCs to validate the
model (see “PPC”). These checks help to ensure that the
model is capable of accurately reproducing the observed
data, thus providing confidence in the evaluation of the
model and parameters.

Computational resources and tips

To achieve accurate estimates, more subjects, more trials,
and often more samples are required, leading to
increased demands for computational resources. This is
not unique to dockerHDDM; other tools using MCMC
algorithms, such as DMC and brms mentioned earlier,
are also affected by these factors. In the examples pro-
vided in this article, fitting each model with 14 subjects
and 3,988 trials takes 2 hr to 3 hr and requires 8 GB to
12 GB of memory. Running out of memory can cause
the Jupyter kernel to suspend and restart, interrupting
the process. Predictably, computational resources
become a limiting factor with increasing data. To facili-
tate better model analysis, we offer the following tips
and recommendations.

Initial testing.  When initially building the model, use
subset data from a small number of subjects and reduce
the MCMC sample size to verify that the model definition
and code are correct. Once validated, increase the data
and sample sizes.

Adjust memory settings.  If users experience a Jupyter
kernel suspension or restart because of memory con-
straints, they can attempt to configure or increase virtual
memory. For Windows users, it is necessary to check and
remove the memory-usage limitations imposed by WSL
(Windows Subsystem for Linux).

Separate execution.  Model fitting, calculation of point-
wise log likelihood, and generation of PPCs data can be
executed separately. This approach helps prevent inter-
rupting long-running processes because of errors and
ensures that each step can be independently validated and
debugged before proceeding to the next.

20	 Pan et al.

Notebook segmentation.  Fit models into separate note-
books to reduce the resource load of loading multiple
models.

Model saving.  Save the fitted models and then load only
the InferenceData files instead of the entire models to
reduce resource usage.

Cloud deployment.  Docker is easily deployed in cloud-
computing environments (or use the docker image in Sin-
gularity). Use your institution’s computing services or rent
cloud computing services to handle larger data sets.

Summary

In this article, we introduce dockerHDDM, a user-
friendly, out-of-the-box, and one-stop Docker image for
implementing HDDM analysis within a modern Bayesian
hierarchical workflow. Our dockerHDDM has three
major advantages: (a) It leverages Docker to solve com-
patibility issues and simplify the installation process, (b)
it ensures broad support across different machines
equipped with either Intel or Apple chips, and (c) it
integrates state-of-the-art Bayesian modeling practices
with ArviZ, facilitating a more principled Bayesian work-
flow. We also provide a step-by-step video tutorial on
how to use dockerHDDM.

Although we have provided a step-by-step guide to
using dockerHDDM, it is unfortunately not possible to
provide a comprehensive introduction to computational

modeling. Given the extensive knowledge required for
principled computational modeling, we recommend
readers refer to the materials in Box 5 for a deeper
understanding of the DDM family, computational model-
ing, hierarchical models, and Bayesian modeling. We
expect that dockerHDDM and this detailed tutorial will
reduce the technical burden and help readers get started
with computational modeling. Ultimately, we hope that
this tool and the computational-modeling concepts pre-
sented in the tutorial will promote the computational
reproducibility of drift-diffusion modeling for users of
all levels of computational expertise.

Appendix

Bayesian hypothesis testing with
Savage–Dickey method

Another method to test the experimental effect is to
compute the Savage-Dickey density ratio to approximate
the Bayes factor (see Box 1). ArviZ provides the `plot_
bf` function to visualize the differences between prior
and posterior distributions and compute the Bayes fac-
tor. Note that the Savage-Dickey ratio is related to the
prior, which is weak in HDDM, resulting in very large
Bayes-factor values. We therefore urge caution in using
this method and that inference should be drawn by
combining as many as possible (e.g., highest density
interval or highest density interval + region of practical
equivalence as mentioned in “Statistical Inference”).

Box 5.  Recommendation for Further Reading

A full understanding of how Bayesian hierarchical drift-diffusion modeling works requires not only basic
knowledge of drift-diffusion modeling but also knowledge of Python programming, Bayesian statistics, and
hierarchical regression models. This background knowledge is generally not part of the coursework in
psychology or neuroscience education, although the situation has been changing in recent years. We
recommend the following resources to quickly catch up and avoid misuse or abuse of hierarchical drift-
diffusion modeling.

Background knowledge/skills Resource

Bayesian statistics Etz & Vandekerckhove, 2018; Kruschke, 2014, 2018; Lambert, 2018; Martin
et al., 2024; McElreath, 2020; van de Schoot et al., 2021.

(Bayesian) Hierarchical (regression)
models

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/; https://github.com/lei-
zhang/BayesCog_Wien;

Capretto et al., 2020.
Computational modeling Blohm et al., 2020; Busemeyer, 2015; Busemeyer & Diederich, 2009; Etz &

Vandekerckhove, 2018; Farrell & Lewandowsky, 2018; Lee & Wagenmakers,
2014; Wilson & Collins, 2019; Zhang et al., 2020.

Drift-diffusion models Boag et al., 2024; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Voss et al.,
2013.

Sequential-sampling models beyond
drift-diffusion models

Fengler et al., 2022; Forstmann et al., 2016; Ratcliff et al., 2016.

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/
https://github.com/lei-zhang/BayesCog_Wien
https://github.com/lei-zhang/BayesCog_Wien

Advances in Methods and Practices in Psychological Science 8(1)	 21

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
z

40

30

20

10

0

Prior
Posterior

De
ns

ity
v_C(conf, Treatment(‘LC’))[T.HC]

7

6

5

4

3

2

1

0

Prior
Posterior

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

a b

Figure S1.  Bayes factor test. This figure illustrates the prior (blue line) and posterior (orange line) density distributions for the drift-rate
parameter under the conflict condition. The dashed vertical line represents the reference/null value (zero), and the black dot indicates
the Bayes factor at this point. The notable difference between the probabilistic density of prior and posterior distributions at the refer-
ence value, which is used to calculate the Savage-Dickey density ratio and approximate the Bayes factor, provides evidence to accept
or reject the experimental effect.

a

b Fig. S2. (continued on next page)

In Figure S1, the left panel displays the Bayes factor
favoring the alternative hypothesis (BF BF10

236
011 5 10= × =. ,

0), indicating extremely strong evidence supporting the
alternative hypothesis over the null hypothesis. This
implies that the conflict condition significantly affects the
drift rate. The right panel shows the Bayes factor favoring
the null hypothesis (BF BF10 010 14= =. , 7.15), indicating
moderate evidence supporting the null hypothesis over
the alternative hypothesis. This suggests that there is no
response bias, as evidenced by z being close to 0.5.

Parameter-recovery result

Wiecki et al. (2013) demonstrated the superiority of
Bayesian methods and hierarchical models for parameter
recovery in HDDM. We illustrate the parameter recovery
analysis of Model 2 in Figure S2. The results show that
our model-fitting approach can yield good parameter
recovery. For the code that repeats this result, see https://
github.com/hcp4715/dockerHDDM/blob/master/dock
erHDDMTutorial/Parameter_recovery.ipynb.

https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb
https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb
https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb

22	 Pan et al.

a

b

Figure S2.  Model 2 parameter-recovery results. Blue is the true parameter, orange is the recovered parameter, white
dots are the means, and the bar is the 95% highest density interval (HDI) range. Subplot A shows the parameter-
recovery results at the group level, including eight parameters, of which, the first five are basic parameters and the
last three are trial-by-trial variants. Subplot B shows the parameter-recovery results at individual level, including five
basic parameters for 13 subjects out of 65.

Advances in Methods and Practices in Psychological Science 8(1)	 23

Transparency

Action Editor: Rogier Kievit
Editor: David A. Sbarra
Author Contributions

Wanke Pan: Software; Validation; Visualization; Writing –
original draft.
Haiyang Geng: Conceptualization; Writing – original draft;
Writing – review & editing.
Lei Zhang: Conceptualization; Writing – original draft;
Writing – review & editing.
Alexander Fengler: Writing – original draft; Writing –
review & editing.
Michael J. Frank: Writing – original draft; Writing – review
& editing.
Ru-Yuan Zhang: Conceptualization; Funding acquisition;
Supervision; Writing – original draft; Writing – review &
editing.
Hu Chuan-Peng: Conceptualization; Funding acquisition;
Software; Supervision; Writing – original draft; Writing –
review & editing.

Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of inter-
est with respect to the authorship or the publication of this
article.

Funding
This work was supported by National Key R&D Program of
China (2023YFF1204200 to R.-Y. Zhang), the National Natu-
ral Science Foundation of China (32471097 to H. Chuan-
Peng; 32441102 and 32100901 to R.-Y. Zhang), Natural
Science Foundation of Shanghai (21ZR1434700 R.-Y. Zhang),
and the Austrian Science Fund (FWF-M3166) to L. Zhang.

Open Practices
All resources are available on OSF at https://osf.io/
3upng/?view_only=2425347775e749c3bab67af68607b918,
which is linked to the GitHub repository at https://github
.com/hcp4715/dockerHDDM/ and other resources. The soft-
ware, data, and scripts (Jupyter notebooks) used to generate
the models and results described in this article can be
accessed via the dockerHDDM image at https://hub.docker
.com/r/hcp4715/hddm. Alternatively, readers can find our
online notebooks and related materials at https://github
.com/hcp4715/dockerHDDM/ and https://github.com/
hcp4715/dockerHDDM/tree/master/OfficialTutorials. In
addition, the code used to create our dockerHDDM images
is available at https://github.com/hcp4715/dockerHDDM/
blob/master/Dockerfile. For any questions regarding this
tutorial or related dockerHDDM images, discussions can be
held at https://github.com/hcp4715/dockerHDDM/discus
sions. This article has received the badges for Open Data
and Open Materials. More information about the Open Prac-
tices badges can be found at http://www.psychologi
calscience.org/publications/badges.

ORCID iDs

Wanke Pan https://orcid.org/0000-0002-0896-6833
Haiyang Geng https://orcid.org/0000-0001-6115-807X

Lei Zhang https://orcid.org/0000-0002-9586-595X
Ru-Yuan Zhang https://orcid.org/0000-0002-0654-715X
Hu Chuan-Peng https://orcid.org/0000-0002-7503-5131

Acknowledgment

Thanks to HDDM (Wiecki et al., 2013; Fengler et al., 2021;
Fengler et al., 2022) and ArviZ (Kumar et al., 2019) for the
open resource. We thank Dr. Mads Lund Pedersen for his open
dockerfile, which insipre the current project. We also thank
the netizens for their time in testing and valuable feedback,
which allows us to continuously improve the tools and tutori-
als. We appreciate the help of Dr. Yuan Rui in the early stage
of docker image development.

Notes

1. Note that `/home/jovyan/{any_folder_name}` is a path
mounted in the Jupyter Docker image and that `{any_folder_
name}` will be visible in the browser. The default username is
`jovyan`, and it cannot be changed.
2. For beginners unfamiliar with Jupyter Notebook, do not panic!
It is just an interface where you can write code and immedi-
ately check results. You may visit the official website at https://
jupyter.org/try-jupyter/notebooks/?path=notebooks/Intro.ipynb
to try out a web-based platform online. The Jupyter website also
provides extensive documentation for users who want to learn
more about Jupyter Notebook and Python programming (see
https://docs.jupyter.org/en/latest/).
3. To run the example notebooks faster, we use only 500 samples
here. For a more in-depth understanding of the MCMC settings,
we recommend reading van de Schoot et al. (2017); and Wiecki
et al. (2013). The burn-in samples serve to calibrate the fitting,
so the final samples need to exclude burn-in samples, yielding a
total of 500 100 400– = samples per chain. Generally, a larger
number of samples improves the estimation accuracy of a model.
4. InferenceData is a more modern data construct that contains
prior, posterior, and a posterior predictive samples and observed
data, facilitating the visualization and analysis of multiple joint
data sets (Hoyer & Hamman, 2017; Kumar et al., 2019).
5. Deviance information criterion can be extracted directly from
the model rather than InferenceData, for example, `m0.dic`.
6. The ROPE should be tailored to the specific paradigm and
research question (Dienes, 2021) and reflect the range of pos-
sible values for each parameter (e.g., Tran et al., 2021). For
example, a recent systematic parameter review of DDM found
that the absolute value of a drift rate ranged from 0.01 to 18.51,
with a median of 2.25 (Tran et al., 2021); another simulation and
meta-analysis of conflict tasks showed that a drift rate between
0.05 and 0.35 captured the conflict effect (Hedge et al., 2018).
Thus, we choose ROPE [–0.2, 0.2] for illustrative purposes, imply-
ing that effects on drift rates smaller than 0.2 are not of interest.

References

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocom-
putational mechanisms of reinforcement learning and deci-
sion-making with the hBayesDM package. Computational
Psychiatry, 1, 24–57. https://doi.org/10.1162/cpsy_a_00002

Alexandrowicz, R. W., & Gula, B. (2020). Comparing eight
parameter estimation methods for the Ratcliff diffusion

https://osf.io/3upng/?view_only=2425347775e749c3bab67af68607b918
https://osf.io/3upng/?view_only=2425347775e749c3bab67af68607b918
https://github.com/hcp4715/dockerHDDM/
https://github.com/hcp4715/dockerHDDM/
https://hub.docker.com/r/hcp4715/hddm
https://hub.docker.com/r/hcp4715/hddm
https://github.com/hcp4715/dockerHDDM/
https://github.com/hcp4715/dockerHDDM/
https://github.com/hcp4715/dockerHDDM/tree/master/OfficialTutorials
https://github.com/hcp4715/dockerHDDM/tree/master/OfficialTutorials
https://github.com/hcp4715/dockerHDDM/blob/master/Dockerfile
https://github.com/hcp4715/dockerHDDM/blob/master/Dockerfile
https://github.com/hcp4715/dockerHDDM/discussions
https://github.com/hcp4715/dockerHDDM/discussions
http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://orcid.org/0000-0002-0896-6833
https://orcid.org/0000-0001-6115-807X
https://orcid.org/0000-0002-9586-595X
https://orcid.org/0000-0002-0654-715X
https://orcid.org/0000-0002-7503-5131
https://jupyter.org/try-jupyter/notebooks/?path=notebooks/Intro.ipynb
https://jupyter.org/try-jupyter/notebooks/?path=notebooks/Intro.ipynb
https://docs.jupyter.org/en/latest/
https://doi.org/10.1162/cpsy_a_00002

24	 Pan et al.

model using free software. Frontiers in Psychology, 11,
Article 484737. https://doi.org/10.3389/fpsyg.2020.484737

Annis, J., Miller, B. J., & Palmeri, T. J. (2017). Bayesian infer-
ence with stan: A tutorial on adding custom distributions.
Behavior Research Methods, 49(3), 863–886. https://doi.org/
10.3758/s13428-016-0746-9

Blohm, G., Kording, K. P., & Schrater, P. R. (2020). A how-
to-model guide for neuroscience. Eneuro, 7(1), Article
ENEURO.352-19.2019. https://doi.org/10.1523/ENEURO
.0352-19.2019

Boag, R. J., Innes, R., Stevenson, N., Bahg, G., Busemeyer, J. R.,
Cox, G. E., Donkin, C., Frank, M., Hawkins, G., Heathcote, A.,
Hedge, C., Lerche, V., Lilburn, S., Logan, G. D., Matzke, D.,
Miletic, S., Osth, A. F., Palmeri, T., Sederberg, P. B.,
. . . Forstmann, B. (2024). An expert guide to planning
experimental tasks for evidence accumulation modelling.
PsyArXiv. https://doi.org/10.31234/osf.io/snqgp

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A.,
Kellen, D., Krypotos, A. M., Lerche, V., Logan, G. D., Palmeri,
T. J., van Ravenzwaaij, D., Servant, M., Singmann, H.,
Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., &
Wagenmakers, E. J. (2018). Estimating across-trial variability
parameters of the Diffusion Decision Model: Expert advice
and recommendations. Journal of Mathematical Psychology,
87, 46–75. https://doi.org/10.1016/j.jmp.2018.09.004

Boehm, U., Evans, N. J., Gronau, Q. F., Matzke, D.,
Wagenmakers, E.-J., & Heathcote, A. J. (2023). Inclusion
Bayes factors for mixed hierarchical diffusion decision
models. Psychological Methods, 29, 625–655. https://doi
.org/10.1037/met0000582

Boelts, J., Lueckmann, J.-M., Gao, R., & Macke, J. H. (2022).
Flexible and efficient simulation-based inference for mod-
els of decision-making. eLife, 11, Article e77220. https://
doi.org/10.7554/eLife.77220

Busemeyer, J. R. (Ed.). (2015). The Oxford handbook of compu-
tational and mathematical psychology. Oxford University
Press.

Busemeyer, J. R., & Diederich, A. (2009). Cognitive modeling.
Sage.

Capretto, T., Piho, C., Kumar, R., Westfall, J., Yarkoni, T., &
Martin, O. A. (2020). Bambi: A simple interface for fitting
Bayesian linear models in python. arXiv. https://doi.org/
10.48550/ARXIV.2012.10754

Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M.,
Samanta, J., Sherman, S. J., & Frank, M. J. (2011).
Subthalamic nucleus stimulation reverses mediofrontal
influence over decision threshold. Nature Neuroscience,
14(11), 1462–1467. https://doi.org/10.1038/nn.2925

Chandrasekaran, C., Peixoto, D., Newsome, W. T., & Shenoy,
K. V. (2017). Laminar differences in decision-related neural
activity in dorsal premotor cortex. Nature Communications,
8(1), Article 614. https://doi.org/10.1038/s41467-017-00715-0

Desai, N., & Krajbich, I. (2022). Decomposing preferences into
predispositions and evaluations. Journal of Experimental
Psychology-General, 151(8), 1883–1903. https://doi.org/
10.1037/xge0001162

Dienes, Z. (2021). Obtaining evidence for no effect. Collabra:
Psychology, 7(1), Article 28202. https://doi.org/10.1525/
collabra.28202

Donkin, C., & Brown, S. D. (2018). Response times and
decision-making. In J. T. Wixted (Ed.), Stevens’ hand-
book of experimental psychology and cognitive neurosci-
ence (pp. 1–33). John Wiley & Sons. https://doi.org/10
.1002/9781119170174.epcn509

Etz, A., Chávez de la Peña, A. F., Baroja, L., Medriano, K.,
& Vandekerckhove, J. (2024). The HDI + ROPE decision
rule is logically incoherent but we can fix it. Psychological
Methods. Advance online publication. https://doi.org/10
.1037/met0000660

Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian
inference for psychology. Psychonomic Bulletin & Review,
25(1), 5–34. https://doi.org/10.3758/s13423-017-1262-3

Evans, N. J., & Wagenmakers, E.-J. (2020). Evidence accumula-
tion models: Current limitations and future directions. The
Quantitative Methods for Psychology, 16(2), 73–90. https://
doi.org/10.20982/tqmp.16.2.p073

Farrell, S., & Lewandowsky, S. (2018). Computational model-
ing of cognition and behavior. Cambridge University Press.
https://doi.org/10.1017/CBO9781316272503

Fengler, A., Bera, K., Pedersen, M. L., & Frank, M. J. (2022).
Beyond drift diffusion models: Fitting a broad class of
decision and reinforcement learning models with HDDM.
Journal of Cognitive Neuroscience, 34(10), 1780–1805.
https://doi.org/10.1162/jocn_a_01902

Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J.
(2021). Likelihood approximation networks (LANs) for
fast inference of simulation models in cognitive neurosci-
ence. eLife, 10, Article e65074. https://doi.org/10.7554/
eLife.65074

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016).
Sequential sampling models in cognitive neuroscience:
Advantages, applications, and extensions. Annual Review
of Psychology, 67(1), 641–666. https://doi.org/10.1146/
annurev-psych-122414-033645

Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V.,
Cavanagh, J. F., & Badre, D. (2015). fMRI and EEG predic-
tors of dynamic decision parameters during human rein-
forcement learning. The Journal of Neuroscience, 35(2),
485–494. https://doi.org/10.1523/JNEUROSCI.2036-14.2015

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding pre-
dictive information criteria for Bayesian models. Statistics
and Computing, 24(6), 997–1016. https://doi.org/10
.1007/s11222-013-9416-2

Gelman, A., & Rubin, D. B. (1992). Inference from iterative
simulation using multiple sequences. Statistical Science,
7(4), 457–472.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C.,
Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner,
P.-C., & Modrák, M. (2020). Bayesian workflow. arXiv.
https://doi.org/10.48550/arXiv.2011.01808

Ging-Jehli, N. R., Ratcliff, R., & Arnold, L. E. (2021). Improving
neurocognitive testing using computational psychiatry—
A systematic review for ADHD. Psychological Bulletin,
147(2), 169–231. https://doi.org/10.1037/bul0000319

Hedge, C., Powell, G., Bompas, A., Vivian-Griffiths, S., &
Sumner, P. (2018). Low and variable correlation between
reaction time costs and accuracy costs explained by
accumulation models: Meta-analysis and simulations.

https://doi.org/10.3389/fpsyg.2020.484737
https://doi.org/10.3758/s13428-016-0746-9
https://doi.org/10.3758/s13428-016-0746-9
https://doi.org/10.1523/ENEURO.0352-19.2019
https://doi.org/10.1523/ENEURO.0352-19.2019
https://doi.org/10.31234/osf.io/snqgp
https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1037/met0000582
https://doi.org/10.1037/met0000582
https://doi.org/10.7554/eLife.77220
https://doi.org/10.7554/eLife.77220
https://doi.org/10.48550/ARXIV.2012.10754
https://doi.org/10.48550/ARXIV.2012.10754
https://doi.org/10.1038/nn.2925
https://doi.org/10.1038/s41467-017-00715-0
https://doi.org/10.1037/xge0001162
https://doi.org/10.1037/xge0001162
https://doi.org/10.1525/collabra.28202
https://doi.org/10.1525/collabra.28202
https://doi.org/10.1002/9781119170174.epcn509
https://doi.org/10.1002/9781119170174.epcn509
https://doi.org/10.1037/met0000660
https://doi.org/10.1037/met0000660
https://doi.org/10.3758/s13423-017-1262-3
https://doi.org/10.20982/tqmp.16.2.p073
https://doi.org/10.20982/tqmp.16.2.p073
https://doi.org/10.1017/CBO9781316272503
https://doi.org/10.1162/jocn_a_01902
https://doi.org/10.7554/eLife.65074
https://doi.org/10.7554/eLife.65074
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.48550/arXiv.2011.01808
https://doi.org/10.1037/bul0000319

Advances in Methods and Practices in Psychological Science 8(1)	 25

Psychological Bulletin, 144(11), 1200–1227. https://doi
.org/10.1037/bul0000164

Henrich, F., Hartmann, R., Pratz, V., Voss, A., & Klauer, K. C.
(2023). The seven-parameter diffusion model: An imple-
mentation in stan for Bayesian analyses. Behavior Research
Methods, 56, 3102–3116. https://doi.org/10.3758/s13428-
023-02179-1

Herz, D. M., Tan, H., Brittain, J.-S., Fischer, P., Cheeran, B.,
Green, A. L., Fitzgerald, J., Aziz, T. Z., Ashkan, K., Little, S.,
Foltynie, T., Limousin, P., Zrinzo, L., Bogacz, R., & Brown, P.
(2017). Distinct mechanisms mediate speed-accuracy
adjustments in cortico-subthalamic networks. eLife, 6,
Article e21481. https://doi.org/10.7554/eLife.21481

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays
and datasets in python. Journal of Open Research Software,
5(1), 10. https://doi.org/10.5334/jors.148

Hu, C.-P., Lan, Y., Macrae, C. N., & Sui, J. (2020). Good me
bad me: Prioritization of the good-self during perceptual
decision-making. Collabra: Psychology, 6(1), Article 20.
https://doi.org/10.1525/collabra.301

Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes rules!
An introduction to applied Bayesian modeling. Chapman
and Hall/CRC. https://www.bayesrulesbook.com/

Johnson, D. J., Hopwood, C. J., Cesario, J., & Pleskac, T. J.
(2017). Advancing research on cognitive processes in social
and personality psychology: A hierarchical drift diffusion
model primer. Social Psychological and Personality Science,
8(4), 413–423. https://doi.org/10.1177/1948550617703174

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90(430), 773–795. https://
doi.org/10.1080/01621459.1995.10476572

Kelter, R. (2021). Bayesian model selection in the M-open
setting—Approximate posterior inference and subsam-
pling for efficient large-scale leave-one-out cross-valida-
tion via the difference estimator. Journal of Mathematical
Psychology, 100, Article 102474. https://doi.org/10.1016/j
.jmp.2020.102474

Kelter, R. (2022). fbst: An R package for the full Bayesian signifi-
cance test for testing a sharp null hypothesis against its alter-
native via the e value. Behavior Research Methods, 54(3),
1114–1130. https://doi.org/10.3758/s13428-021-01613-6

Kelter, R. (2023). How to choose between different Bayesian
posterior indices for hypothesis testing in practice.
Multivariate Behavioral Research, 58(1), 160–188. https://
doi.org/10.1080/00273171.2021.1967716

Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial
with R, JAGS, and Stan. Academic Press.

Kruschke, J. K. (2018). Rejecting or accepting parameter val-
ues in Bayesian estimation. Advances in Methods and
Practices in Psychological Science, 1(2), 270–280. https://
doi.org/10.1177/2515245918771304

Kruschke, J. K. (2021). Bayesian analysis reporting guidelines.
Nature Human Behaviour, 5(10), Article 10. https://doi
.org/10.1038/s41562-021-01177-7

Kumar, R., Carroll, C., Hartikainen, A., & Martín, O. A. (2019).
ArviZ: A unified library for exploratory analysis of Bayesian
models in python. Journal of Open Source Software, 4(33),
Article 1143. https://doi.org/10.21105/joss.01143

Kutlikova, H. H., Zhang, L., Eisenegger, C., van Honk, J., &
Lamm, C. (2023). Testosterone eliminates strategic pro-

social behavior through impacting choice consistency in
healthy males. Neuropsychopharmacology, 48(10), Article
10. https://doi.org/10.1038/s41386-023-01570-y

LaFollette, K., Fan, J., Puccio, A., & Demaree, H. A. (2024).
FlexDDM: A flexible decision-diffusion python package for
the behavioral sciences. Proceedings of the Annual Meeting
of the Cognitive Science Society, 46, 4772–4778. https://
escholarship.org/uc/item/4q57r2x0

Lambert, B. (2018). A student’s guide to Bayesian statistics.
Sage.

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive
modeling: A practical course. Cambridge University Press.
https://doi.org/10.1017/CBO9781139087759

Lerche, V., & Voss, A. (2016). Model complexity in diffusion
modeling: Benefits of making the model more parsimoni-
ous. Frontiers in Psychology, 7, Article 1324. https://doi
.org/10.3389/fpsyg.2016.01324

Lerche, V., & Voss, A. (2017). Retest reliability of the parame-
ters of the Ratcliff diffusion model. Psychological Research,
81(3), 629–652. https://doi.org/10.1007/s00426-016-0770-5

Liu, Z., Hu, M., Zheng, Y.-R., Sui, J., & Chuan-Peng, H. (2023).
A multiverse assessment of the reliability of the self match-
ing task as a measurement of the self-prioritization effect.
PsyArXiv. https://doi.org/10.31234/osf.io/g6uap

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D.
(2012). The BUGS book: A practical introduction to
Bayesian analysis. Chapman and Hall/CRC. https://doi
.org/10.1201/b13613

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke,
D. (2019). Indices of effect existence and significance
in the Bayesian framework. Frontiers in Psychology, 10,
Article 2767. https://doi.org/10.3389/fpsyg.2019.02767

Martin, O., Fonnesbeck, C., & Wiecki, T. (2024). Bayesian
analysis with python: A practical guide to probabilistic
modeling (3rd ed.). Packt.

Matzke, D., & Wagenmakers, E.-J. (2009). Psychological inter-
pretation of the ex-Gaussian and shifted Wald parameters:
A diffusion model analysis. Psychonomic Bulletin & Review,
16(5), 798–817. https://doi.org/10.3758/PBR.16.5.798

McElreath, R. (2020). Statistical rethinking: A Bayesian
course with examples in R and Stan (2nd ed.). Taylor and
Francis, CRC Press. https://www.taylorfrancis.com/books/
mono/10.1201/9780429029608/statistical-rethinking-rich
ard-mcelreath

Mills, J. A. (2018). Objective Bayesian precise hypothesis testing.
University of Cincinnati.

Pedersen, M. L., Alnæs, D., van der Meer, D., Fernandez-
Cabello, S., Berthet, P., Dahl, A., Kjelkenes, R., Schwarz, E.,
Thompson, W. K., Barch, D. M., Andreassen, O. A., &
Westlye, L. T. (2022). Computational modeling of the
N-Back task in the ABCD study: Associations of drift dif-
fusion model parameters to polygenic scores of mental dis-
orders and cardiometabolic diseases. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 8, 290–299.
https://doi.org/10.1016/j.bpsc.2022.03.012

Pedersen, M. L., & Frank, M. J. (2020). Simultaneous hierar-
chical Bayesian parameter estimation for reinforcement
learning and drift diffusion models: A tutorial and links to
neural data. Computational Brain & Behavior, 3(4), 458–
471. https://doi.org/10.1007/s42113-020-00084-w

https://doi.org/10.1037/bul0000164
https://doi.org/10.1037/bul0000164
https://doi.org/10.3758/s13428-023-02179-1
https://doi.org/10.3758/s13428-023-02179-1
https://doi.org/10.7554/eLife.21481
https://doi.org/10.5334/jors.148
https://doi.org/10.1525/collabra.301
https://www.bayesrulesbook.com/
https://doi.org/10.1177/1948550617703174
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1016/j.jmp.2020.102474
https://doi.org/10.1016/j.jmp.2020.102474
https://doi.org/10.3758/s13428-021-01613-6
https://doi.org/10.1080/00273171.2021.1967716
https://doi.org/10.1080/00273171.2021.1967716
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.21105/joss.01143
https://doi.org/10.1038/s41386-023-01570-y
https://escholarship.org/uc/item/4q57r2x0
https://escholarship.org/uc/item/4q57r2x0
https://doi.org/10.1017/CBO9781139087759
https://doi.org/10.3389/fpsyg.2016.01324
https://doi.org/10.3389/fpsyg.2016.01324
https://doi.org/10.1007/s00426-016-0770-5
https://doi.org/10.31234/osf.io/g6uap
https://doi.org/10.1201/b13613
https://doi.org/10.1201/b13613
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3758/PBR.16.5.798
https://www.taylorfrancis.com/books/mono/10.1201/9780429029608/statistical-rethinking-richard-mcelreath
https://www.taylorfrancis.com/books/mono/10.1201/9780429029608/statistical-rethinking-richard-mcelreath
https://www.taylorfrancis.com/books/mono/10.1201/9780429029608/statistical-rethinking-richard-mcelreath
https://doi.org/10.1016/j.bpsc.2022.03.012
https://doi.org/10.1007/s42113-020-00084-w

26	 Pan et al.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift dif-
fusion model as the choice rule in reinforcement learning.
Psychonomic Bulletin & Review, 24(4), 1234–1251. https://
doi.org/10.3758/s13423-016-1199-y

Peikert, A., & Brandmaier, A. M. (2021). A reproducible data
analysis workflow. Quantitative and Computational
Methods in Behavioral Sciences, 1, Article e3763. https://
doi.org/10.5964/qcmb.3763

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., & Kothe, U.
(2022). BayesFlow: Learning complex stochastic models
with invertible neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(4), 1452–1466.
https://doi.org/10.1109/TNNLS.2020.3042395

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model:
Theory and data for two-choice decision tasks. Neural
Computation, 20(4), 873–922. https://doi.org/10.1162/
neco.2008.12-06-420

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016).
Diffusion decision model: Current issues and history.
Trends in Cognitive Sciences, 20(4), 260–281. https://doi
.org/10.1016/j.tics.2016.01.007

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of
the diffusion model: Approaches to dealing with contami-
nant reaction times and parameter variability. Psychonomic
Bulletin & Review, 9(3), 438–481. https://doi.org/10.3758/
bf03196302

Robert, C. P., & Casella, G. (2004). The Metropolis—Hastings
algorithm. In C. P. Robert & G. Casella (Eds.), Monte Carlo
statistical methods (pp. 267–320). Springer. https://doi.
org/10.1007/978-1-4757-4145-2_7

Schubert, A.-L., Hagemann, D., Voss, A., & Bergmann, K.
(2017). Evaluating the model fit of diffusion models with
the root mean square error of approximation. Journal of
Mathematical Psychology, 77, 29–45. https://doi.org/10
.1016/j.jmp.2016.08.004

Shadlen, M. N., & Shohamy, D. (2016). Decision making and
sequential sampling from memory. Neuron, 90(5), 927–
939. https://doi.org/10.1016/j.neuron.2016.04.036

Sheng, F., Ramakrishnan, A., Seok, D., Zhao, W. J., Thelaus, S.,
Cen, P., & Platt, M. L. (2020). Decomposing loss aversion
from gaze allocation and pupil dilation. Proceedings of the
National Academy of Sciences, USA, 117(21), 11356–11363.
https://doi.org/10.1073/pnas.1919670117

Shinn, M., Lam, N. H., & Murray, J. D. (2020). A flexible frame-
work for simulating and fitting generalized drift-diffusion
models. eLife, 9, 1–27. https://doi.org/10.7554/elife.56938

Singmann, H., Brown, S., Gretton, M., Heathcote, A., Voss, A.,
Voss, J., & Terry, A. (2022). rtdists: Response time dis-
tributions (Version 0.11-5) [Computer software]. https://
10.32614/CRAN.package.rtdists

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der
Linde, A. (2002). Bayesian measures of model complex-
ity and fit. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 64(4), 583–639. https://doi
.org/10.1111/1467-9868.00353

Stevenson, N., Donzallaz, M. C., Innes, R., Forstmann, B.,
Matzke, D., & Heathcote, A. (2024). EMC2: An R package
for cognitive models of choice. PsyArXiv. https://doi.org/
10.31234/osf.io/2e4dq

Tran, N.-H., Van Maanen, L., Heathcote, A., & Matzke, D.
(2021). Systematic parameter reviews in cognitive model-
ing: Towards a robust and cumulative characterization of

psychological processes in the diffusion decision model.
Frontiers in Psychology, 11, Article 608287. https://doi.org/
10.3389/fpsyg.2020.608287

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K.,
Tadesse, M. G., Vannucci, M., Gelman, A., Veen, D., &
Willemsen, J. (2021). Bayesian statistics and modelling.
Nature Reviews Methods Primers, 1, Article 16. https://doi
.org/10.1038/s43586-021-00017-2

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-
Zwijnenburg, M., & Depaoli, S. (2017). A systematic
review of Bayesian articles in psychology: The last 25
years. Psychological Methods, 22(2), 217–239. https://doi
.org/10.1037/met0000100

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian
model evaluation using leave-one-out cross-validation and
WAIC. Statistics and Computing, 27(5), 1413–1432. https://
doi.org/10.1007/s11222-016-9696-4

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2021). Rank-normalization, folding, and localization:
An improved R2 for assessing convergence of MCMC (with
discussion). Bayesian Analysis, 16(2), 667–718. https://doi
.org/10.1214/20-BA1221

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in
experimental psychology. Experimental Psychology, 60(6),
385–402. https://doi.org/10.1027/1618-3169/a000218

Voss, A., & Voss, J. (2007). Fast-dm: A free program for effi-
cient diffusion model analysis. Behavior Research Methods,
39(4), 767–775. https://doi.org/10.3758/BF03192967

Wabersich, D., & Vandekerckhove, J. (2014). Extending
JAGS: A tutorial on adding custom distributions to JAGS
(with a diffusion model example). Behavior Research
Methods, 46(1), 15–28. https://doi.org/10.3758/s13428-
013-0369-3

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R.
(2010). Bayesian hypothesis testing for psychologists:
A tutorial on the Savage–Dickey method. Cognitive
Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cog
psych.2009.12.001

Wagenmakers, E.-J., Van Der Maas, H. L. J., & Grasman,
R. P. P. P. (2007). An EZ-diffusion model for response time
and accuracy. Psychonomic Bulletin & Review, 14(1), 3–22.
https://doi.org/10.3758/BF03194023

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross
validation and widely applicable information criterion in
singular learning theory. Journal of Machine Learning
Research, 11(12), 3571–3594.

Wiebels, K., & Moreau, D. (2021). Leveraging containers for
reproducible psychological research. Advances in Methods
and Practices in Psychological Science, 4(2). https://doi
.org/10.1177/25152459211017853

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM:
Hierarchical Bayesian estimation of the drift-diffusion
model in python. Frontiers in Neuroinformatics, 7, Article
14. https://doi.org/10.3389/fninf.2013.00014

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the
computational modeling of behavioral data. eLife, 8, Article
e49547. https://doi.org/10.7554/eLife.49547

Zhang, L., Lengersdorff, L., Mikus, N., Glascher, J., & Lamm,
C. (2020). Using reinforcement learning models in social
neuroscience: Frameworks, pitfalls and suggestions of
best practices. Social Cognitive and Affective Neuroscience,
15(6), 695–707. https://doi.org/10.1093/scan/nsaa089

https://doi.org/10.3758/s13423-016-1199-y
https://doi.org/10.3758/s13423-016-1199-y
https://doi.org/10.5964/qcmb.3763
https://doi.org/10.5964/qcmb.3763
https://doi.org/10.1109/TNNLS.2020.3042395
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.3758/bf03196302
https://doi.org/10.3758/bf03196302
https://doi.org/10.1007/978-1-4757-4145-2_7
https://doi.org/10.1007/978-1-4757-4145-2_7
https://doi.org/10.1016/j.jmp.2016.08.004
https://doi.org/10.1016/j.jmp.2016.08.004
https://doi.org/10.1016/j.neuron.2016.04.036
https://doi.org/10.1073/pnas.1919670117
https://doi.org/10.7554/elife.56938
https://10.32614/CRAN.package.rtdists
https://10.32614/CRAN.package.rtdists
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.31234/osf.io/2e4dq
https://doi.org/10.31234/osf.io/2e4dq
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.1038/s43586-021-00017-2
https://doi.org/10.1038/s43586-021-00017-2
https://doi.org/10.1037/met0000100
https://doi.org/10.1037/met0000100
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1027/1618-3169/a000218
https://doi.org/10.3758/BF03192967
https://doi.org/10.3758/s13428-013-0369-3
https://doi.org/10.3758/s13428-013-0369-3
https://doi.org/10.1016/j.cogpsych.2009.12.001
https://doi.org/10.1016/j.cogpsych.2009.12.001
https://doi.org/10.3758/BF03194023
https://doi.org/10.1177/25152459211017853
https://doi.org/10.1177/25152459211017853
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1093/scan/nsaa089

