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Tutorial

The drift-diffusion model (DDM) is one of the most 
widely used computational models (for an overview, see 
Ratcliff et al., 2016) to quantify the evidence-accumulation 
processes during decision-making in neuroscience 
(Cavanagh et  al., 2011; Herz et  al., 2017; Shadlen & 
Shohamy, 2016), psychology (Hu et al., 2020; D. J. Johnson 
et al., 2017; Kutlikova et al., 2023), behavioral economics 
(Desai & Krajbich, 2022; Sheng et al., 2020), and psy-
chiatry (Ging-Jehli et al., 2021; Pedersen et al., 2022). 

According to the DDM, experimentally observed pairs 
of response times and choices arise from a process of 
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Abstract
Drift-diffusion models (DDMs) are pivotal in understanding evidence-accumulation processes during decision-making 
across psychology, behavioral economics, neuroscience, and psychiatry. Hierarchical DDMs (HDDMs), a Python library 
for hierarchical Bayesian estimation of DDMs, has been widely used among researchers, including researchers with 
limited coding proficiency, in fitting DDMs and other sequential sampling models. However, issues of compatibility in 
installation and lack of support for more recent Bayesian-modeling functionalities pose serious challenges for new users, 
limiting broader adaptation and reproducibility of HDDMs. To address these issues, we created dockerHDDM, a user-
friendly computational environment for HDDMs with new features. dockerHDDM brings three improvements: (a) easy 
to install once docker is installed, ensuring reproducibility and saving time for researchers; (b) compatible with machines 
with Apple chips; (c) seamless integration with ArviZ, a state-of-the-art Bayesian-modeling library. This tutorial serves 
as a practical, hands-on guide for researchers to leverage dockerHDDM’s capabilities in conducting efficient Bayesian 
hierarchical analysis of DDMs. The notebook presented here and in the docker image will enable researchers with 
various programming levels to model their data with HDDMs.
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stochastic evidence accumulation to a decision boundary 
(e.g., Voss et al., 2013; see Figure 1 and the related DDM 
glossary in Table 1). This theoretical framework has been 

shown not only to correlate robustly with established 
neural substrates (Chandrasekaran et al., 2017; Forstmann 
et al., 2016) but also to serve as a powerful measurement 
tool for examining individual differences across cognitive 
tasks, experimental manipulations, and participant popu-
lations (Boag et al., 2024; Donkin & Brown, 2018; Evans 
& Wagenmakers, 2020; but see Liu et al., 2023). Despite 
its theoretical contributions, the DDM is difficult to apply 
to experimental data in practice because the derivation 
of inference-relevant quantities (e.g., the likelihood func-
tion) requires a mathematical understanding of the com-
plex stochastic process of evidence accumulation.

Several software packages have been developed to 
facilitate the application of DDM (see “Why Use docker
HDDM Among Tools” section), proving particularly ben-
eficial for researchers with limited computational 
expertise. Among them, HDDM, a Python library for 
hierarchical DDM, is by far the most cited toolbox in the 
community (Wiecki et  al., 2013; with 996 citations in 
Google Scholar as of August 26, 2024). Despite the suc-
cess and popularity of HDDM, it suffers from several 
practical issues. First, the installation process of HDDM 
is cumbersome, exacerbated by its reliance on PyMC 
2.3.8 for Markov chain Monte Carlo (MCMC) sampling, 
a package that is no longer supported and may clash 
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Fig. 1.  Illustration of the evidence-accumulation process assumed by 
the drift-diffusion model (DDM). DDM has four basic parameters: drift 
rate (v ), decision boundary (a ), initial bias (z ), and nondecision time 
(t ). The drift rate (v ) is the average speed of evidence accumulation 
toward a decision; the decision boundary (a ) is the distance between 
two decision thresholds, and the evidence needed to make a deci-
sion increase as a  increases; the initial bias (z ) reflects the starting 
point of evidence accumulation; nondecision time (t ) is the time not 
used for evidence accumulation, for example, stimulus encoding or 
motor execution. For a more detailed description of the DDM and its 
parameters, see Table 1.

Table 1.  Drift-Diffusion Model Glossary

Term Description

Accumulator A component of the DDM that accumulates evidence for different decision options until a 
threshold is reached, triggering a decision.

Random walk A stochastic process that describes a path consisting of a sequence of random steps. It refers to 
the modeling of decision-making as a process of accumulating evidence over time.

Diffusion The diffusion refers to the variability in the evidence-accumulation process that represents 
random fluctuations in the decision variable.

Optional stopping The concept of stopping the decision-making process at a point chosen by the decision maker, 
often when a certain level of confidence or evidence threshold is reached.

Drift rate (v) The average rate of evidence accumulation toward one of the decision boundaries. The more 
difficult the task, the less stimulus discrimination and the smaller the drift rate.

Decision boundary (a) The threshold that, when reached by the accumulated evidence, triggers a decision. It 
represents the speed-accuracy trade-off or caution, and the higher its value, the higher the 
accuracy at the expense of slower response times.

Nondecision time (t) The time taken by processes other than decision-making (e.g., sensory encoding and motor 
execution). It simply shifts response time distribution.

Initial bias (z) The initial value of the decision variable, which indicates any initial bias in evidence 
accumulation, is also called ‘starting point’ in the literature. The closer it is to a boundary 
(1 and 0 correspond to the upper and lower boundaries, respectively), the faster and more 
frequent the response.

Drift-rate variability (sv) The variability in the drift-rate parameter across trials. It increases the proportion of slow errors.
Initial bias variability  
  (sz )

The across-trial variability in the initial bias parameter in the DDM. It increases the proportion of 
fast errors.

Nondecision-time  
  variability (st )

The across-trial variability in the nondecision time parameter in the DDM. It simultaneously 
increases the probability of both faster and slower responses, resulting in a thicker tail of the 
RT distribution.

Note: The terms used here are defined within the framework of the sequential sampling model (Forstmann et al., 2016; Ratcliff et al., 2016), 
and some of them, such as diffusion and optional stopping, differ from those used in the mathematical literature. DDM = drift-diffusion 
model; RT = reaction/response time.
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with the latest computer modules. Second, and for the 
same reason, out-of-the-box HDDM is not compatible 
with Apple chips, which creates a significant barrier for 
Mac users. Third, although HDDM natively centers 
around Bayesian methods, it does not conveniently sup-
port all aspects of the evolved standards in Bayesian-
modeling workflows (Ahn et  al., 2017; Gelman et  al., 
2020; Kruschke, 2021). Significant progress has recently 
been made in supporting the principled Bayesian-mod-
eling workflow in easy-to-use tool kits, such as the 
Python package ArviZ (Kumar et  al., 2019). Bridging 
these new capabilities with HDDM facilitates a one-stop 
Bayesian-modeling pipeline for experimentalists and 
computational modelers interested in applying the DDM 
to their experimental data.

To address the above issues, we leveraged the Docker 
container technology to create dockerHDDM, a stable 
and complete virtualized Python computing environ-
ment that enables out-of-the-box implementations of 
Bayesian hierarchical DDMs. dockerHDDM has three 
major advantages (Table 2). First, it benefits from the 
easy-to-deploy nature of the Docker environment to 
avoid compatibility issues. Second, it is compatible with 
both Intel and Apple chips. Third, it augments HDDM 
with ArviZ, a Python module that enables a wide range 
of advanced Bayesian-modeling analyses. We expect 
dockerHDDM to provide an easy-to-use environment to 
help researchers across various backgrounds efficiently 
use DDM in their research.

How to Follow This Tutorial

The primary goal of this article is to present a practical 
guide to dockerHDDM for beginners with little modeling 
experience. In the tutorial, we start with step-by-step 
instructions on how to configure the dockerHDDM envi-
ronment and how to use it in practical data analysis 

(Fig. 2). To assist reproducibility and easy application, a 
corresponding step-by-step video walk-through is avail-
able on YouTube at https://www.youtube.com/watch? 
v=ZU1fbXEuP8s or on OSF at https://osf.io/xz9m2.

In the setup section (top panel in Fig. 2, correspond-
ing to “Install Docker” section in this article), we provide 
instructions on how to install Docker. After that, we 
demonstrate how to obtain the dockerHDDM image and 
how to use this image to access the Jupyter notebook 
interface (middle panel in Fig. 2, corresponding to “Pull 
dockerHDDm Image” and “Run dockerHDDm Container” 
sections). Finally, within a working Jupyter notebook, 
we show how to analyze an example data set with dock-
erHDDM in a principled Bayesian workflow (bottom 
panel in Fig. 2, corresponding to “Example of Workflow” 
section).

Install and use dockerHDDM

Install Docker

Docker serves to create an all-in-one, fast, cross-platform 
computing environment. The Docker website provides 
easy-to-follow installation instructions (https://docs 
.docker.com/get-docker/) and supports Windows, 
MacOS, and Linux (see Box 2). Windows users should 
ensure their system version is 21H2 (build 19044) or 
higher and have either WSL or Hyper-V configured 
before installation (see https://docs.docker.com/desk 
top/install/windows-install/).

After installing Docker Desktop (or Docker Engine 
for Linux users), one can verify the installation by run-
ning the following command in a terminal (Fig. 3). If the 
container starts and runs successfully, it will display a 
confirmation message and then exit (Fig. 3):

$ docker run hello-world

Pull dockerHDDM image

After ensuring that Docker has been successfully installed 
and the Docker engine is running (Fig. 3), you can pull 
the dockerHDDM image by simply running the com-
mand in the terminal (see the meaning of each argument 
in Fig. 4a):

$ docker pull hcp4715/hddm

or

$ docker pull hcp4715/hddm:latest

This command will pull the latest default version of 
dockerHDDM, which corresponds to the image with the 

Table 2.  Comparisons Between dockerHDDM and the 
Original HDDM Package

HDDM dockerHDDM

Support ArviZa No Yes
  Plotting (e.g., HDI) No Yes
  Diagnosis (e.g., ESS) No Yes
  Model comparison (LOO-CV,  
    WAIC)

No Yes

Installation Hard Easy
Parallel processing Hard Easy
Compatibility with Apple chips Hard Easy

Note: HDI = high-density interval; ESS = effective sample size; 
LOO-CV = leave-one-out cross-validation; WAIC, widely applicable 
information criterion; PPC, posterior predictive checks.
aPlotting, diagnosis, and model comparison are functions of ArviZ, 
including HDI, ESS, LOO, WAIC, and PPC.

https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://osf.io/xz9m2
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/windows-install/
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docker run hello-world

user@DESKTOP:/$ docker pull hcp4715/hddm
user@DESKTOP:/$ docker run -it --rm -p 8888:88    
88 -v $(pwd):/home/jovyan/work hcp4715/hddm j
upyter notebook

[C 06:50:52.342 NotebookApp]
    To access the notebook, open this file in a 
browser:
    ...
    Copy and paste URL:
      http://127.0.0.1:8888/?token=0ce749eb...

Fig. 2.  dockerHDDM usage flowchart. The code in the figure is for demonstration purposes only. Specific instructions and copyable code 
can be found in the following corresponding sections. The top panel describes how to install Docker, corresponding to “Install Docker”; 
the middle panel describes how to pull and run dockerHDDM, corresponding to “Pull dockerHDDm Image” and “Run dockerHDDm Con-
tainer”; and the bottom panel shows the workflow in dockerHDDM, corresponding to “Example of Workflow.” A video tutorial is available 
at https://www.youtube.com/watch?v=ZU1fbXEuP8s and https://osf.io/xz9m2.

https://www.youtube.com/watch?v=ZU1fbXEuP8s
https://osf.io/xz9m2
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Box 1.  Glossary of Terms Used in Bayesian Modeling

Prior, or prior distribution, often referred to as p( )θ , is the initial belief that researchers have from pilot data.
Likelihood, or likelihood function, often referred to as p y( | )θ , is the probability of the observed data y 

as a function of the specific parameters θ of a chosen statistical model. For example, the Bernoulli function is 
the likelihood function for statistically describing coin tossing.

Posterior, or posterior distribution, often referred to as p y( | )θ , refers to the updated beliefs about the 
parameters θ after observing the data y, balancing prior knowledge with observed data according to Bayes’s 
rule, that is, p y p y p( | ) ( | ) ( )θ θ θ∝ .

Markov chain Monte Carlo (MCMC) is a sampling method to infer the posterior distribution by 
simulation. The Markov chains (usually multiple MCMC chains are required) are algorithmically constructed so 
that their corresponding stationary distribution using MCMC samples matches the posterior distribution of 
interest in the limit (Kruschke, 2014; Robert & Casella, 2004). The process of reaching this stationary 
distribution is called “MCMC convergence.” These sampled parameter values serve as the approximation to the 
posterior distribution and can then be used to obtain empirical estimates of the posterior distribution and 
associated summary statistics of interest using Monte Carlo integration. In the literature, a chain (or trace) is 
referred to as a collection of samples (or draws). Traces serve as a basis for diagnosing convergence and/or 
other potential problems with the procedure in a given application. MCMC is particularly useful for models 
with high complexity.

Effective sample size (ESS) is the number of independent samples with the same estimation power as 
the N autocorrelated samples from each MCMC chain. ESS is often used to determine whether the number of 
draws in MCMC chains is sufficient to guarantee a reliable estimate of uncertainty. An ESS greater than 400 
is recommended, with the ESS for all four MCMC chains being 100 (Vehtari et al., 2021). However, the 
required ESS should be informed by the statistics one wishes to estimate from the posterior. It is 
recommended that an ESS of at least 10,000 is required for reasonably stable estimates of highest density 
intervals; for stable estimates of equal-tailed intervals, a lower ESS is sufficient; a smaller ESS may yield 
stable estimates of the central tendency, especially if it falls in a high-density region of the distribution 
(Kruschke, 2018, 2021).

Gelman-Rubin statistics (R̂ ) is the ratio of within-chains variability to between-chains variability. Values 
close to 1.0 for all parameters and quantities of interest suggest that the MCMC algorithm has sufficiently 
converged to stationary distributions. In practice, the maximum R̂  must be less than 1.1 (Annis et al., 2017), 
more stringent criteria requires the R̂  values of less than 1.01, and a compromise is 1.05  
(A. A. Johnson et al., 2022).

Posterior predictive samples, p y y�|( ), simulates new data y� conditional on the posterior distribution 
given the observed data y. The simulated data can then be used to check whether the model can be 
considered a good fit to the data-generating mechanism by comparing the simulation with the observed data. 
This process is often called “posterior predictive checks.”

Leave-one-out cross-validation is a model-evaluation approach in which the model is trained on all 
observations except for a single observation yi (where i n= …1 2 3, , , , ), and then used to predict the held-out 
observation yi. This procedure is repeated for each of the n observations.

Log predictive density, log p y�|θ( ), is an overall summary of a model’s predictive abilities by estimating 
the log-likelihood of new data �y given the true parameters θ. However, because both the new data �y and the 
true-model parameters θ are typically unavailable in empirical data, the log predictive density is approximated 
using the observed data y and the posterior estimates of the parameters θ̂, hence log p y log p y( ) ( )ˆ�| |θ θ≈ . This 
estimate, when multiplied by –2, gives the deviance, −2 log p y( )ˆ|θ . However, because log p y( )ˆ|θ  is a biased 
estimate of log p y( | )� θ , an adjustment is required to correct the bias.

Log pointwise predictive density, log
S
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point yi conditional on the model parameters θs . In practice, this quantity is estimated using samples θs (for 
s S= …1 2 3, , , , ) drawn from the posterior distribution.

(continued)
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Expected log pointwise predictive density (ELPPD), E log p yfi

n

post i( )
=∑ ( )
1

� , is a measure of out-of-

sample predictive performance for new data �yi generated by the true data-generating process. p ypost i( )�  is the 
predictive density for �yi based on the posterior distribution, f is the true underlying model, and E f  denotes the 
expectation that averages over the true data-generating distribution (Gelman et al., 2014). ELPPD is commonly 
the unknown parameters θ in a model before observing data. It can either be formed from existing research or 
used to compare the predictive performance of different models because it provides an estimate of how well a 
model is expected to perform on new data.

Highest density interval (HDI) is an estimate of a parameter’s credible range in the context of Bayesian 
statistics. It encompasses an interval of the posterior distribution in which each point within this interval has a 
higher density than points outside of it. For instance, a 95% HDI means that there is a 95% chance that the true 
parameter value falls within this range, making it a reliable indicator of parameter uncertainty. HDIs are commonly 
used for hypothesis testing regarding effect sizes and comparisons across different conditions or groups.

A region of practical equivalence (ROPE) is a predefined range of parameter values that are considered 
practically equivalent to zero, which could be based on existing literature or theoretical reasoning (Kruschke, 
2018, 2021). To determine whether a parameter estimate is significantly different from zero, a ROPE might be 
set as a range around zero. If the 95% HDI of the parameter lies entirely outside this ROPE, the parameter is 
considered credibly different from zero. If the HDI is entirely within the ROPE, the parameter is effectively zero 
for practical purposes. Partial overlap suggests that the parameter’s result should be interpreted with caution. 
Note that caution should be taken when using the HDI + ROPE method for statistical inference on transformed 
parameters because of an inconsistency in transformation properties between ROPE and HDI (Etz et al., 2024).

Bayes’s factor (BF) and Savage-Dickey density ratio (SDDR): BF quantifies the strength of evidence 
for one statistical model over another. A value greater than 1 suggests more support for the alternative model 
relative to the original model, offering a continuous measure of evidence (Kass & Raftery, 1995). The SDDR 
simplifies BF computation for nested models by comparing a parameter’s posterior density at a specific point 
(typically zero) to its prior density at the same point. This method is efficient and effective for evaluating 
whether a parameter is significantly different from zero (Wagenmakers et al., 2010).

Box 1.  (continued)

Box 2.  Basic Introduction to Docker

Docker is an open-source platform that automates the deployment, scaling, and management of applications. 
It achieves this through containerization, a process that packages an application and its dependencies into a 
single, portable, and consistent unit, known as a “container image.” Containers ensure that applications run 
reliably regardless of the environment (Peikert & Brandmaier, 2021; Wiebels & Moreau, 2021).

Docker uses a client-server architecture in which the Docker client communicates with the Docker daemon, 
responsible for building, running, and distributing containers. The core components of Docker are the Docker 
Engine, Docker Hub, and Docker Compose. The Docker Engine is the runtime that enables containerization, 
and Docker Hub is a cloud-based registry for sharing and managing container images. Docker Compose, on 
the other hand, is a tool for defining and running multicontainer Docker applications.

Common Docker Commands:

 � docker pull [image]`: Downloads a Docker image from a registry. For instructions on downloading 
the dockerHDDM image, see “Pull dockerHDDm Image.”

 � docker run [image]`: Runs a container from a Docker image. For details on how to start a container 
using the dockerHDDM image, see “Run dockerHDDm Container.”

(continued)

tag `1.0.1`. One can also select different tags for  
different versions of HDDM (see https://hub.docker 
.com/r/hcp4715/hddm/tags). Note that the tutorial in 

this article works with the `latest` or `1.0.1` tags, 
and it is compatible with 0.8.0, with minor grammar 
changes.

https://hub.docker.com/r/hcp4715/hddm/tags
https://hub.docker.com/r/hcp4715/hddm/tags
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Box 2.  (continued)

 � docker images`: Lists all Docker images on the local machine. This can be used to check different 
versions of the dockerHDDM image.

 � docker commit [container_id] [new_image_name]`: Creates a new image from a container’s 
changes. For example, if you modify or install new Python packages in the dockerHDDM container, you 
can save these changes as a new image.

 � docker build [dockerfile]`: Builds a Docker image from a Dockerfile in the current directory. 
You can customize the dockerHDDM image using the provided Dockerfile.

 � docker push [repository/image:tag]`: Uploads a Docker image to a registry. After logging in, 
you can push the saved image to Docker Hub or any other Docker registry.

 � docker rmi [image]`: Removes a Docker image from the local machine. This is useful for cleaning 
up unused images.

 � docker save -o [output_file] [image]`: Saves a Docker image to a tar archive file. This is 
useful for backing up images or transferring them to another system.

  �̀ docker load -i [input_file]`: Loads a Docker image from a tar archive file. This can be used to 
restore or import images from a backup.

Fig. 3.  Command to check Docker installation in terminal. After running the command `docker run hello-world` (highlighted at first line), 
the printout shows that Docker has been successfully installed on the system. The schematic interfaces of the terminal on different platforms 
are shown: (left) MacOS, (middle) Windows, and (right) Ubuntu.

Run dockerHDDM container

After pulling the Docker image to a local machine, you can 
start a computing environment by running the docker-
HDDM image with the command in the terminal (Fig. 4b):

$ docker run -v $(pwd):/home/jovyan/work 
-p 8888:8888 -it --rm hcp4715/hddm jupyter 
notebook

This command creates a Docker container, which is a 
specialized environment encapsulated within the Docker 

platform. The `-v` option is used to mount a local 
folder into the container’s file system, enabling file 
exchange from the host machine. The example code 
`$(pwd):/home/jovyan/work` specifies two paths 
separated by a colon. The path on the left, denoted by 
`$(pwd)`, represents the current working directory on 
the host machine, and the path on the right, `/home/
jovyan/work`,1 is the location inside the container 
where the folder will be mounted (Fig. 4b). This means 
that you can read and write the files from your local 
machine in the “work” directory in the browser. 
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`$(pwd)` can be replaced with a valid folder path on 
your local machine. For example, for a folder named 
“ddm_project” on the drive D, it can be mounted with 
the following arguments in the respective operating sys-
tems: in Linux, `-v /mnt/d/ddm_project:/home/
jovyan/work`; in Windows, `-v D:\ddm_project:/
home/jovyan/work`; and in MacOS, ̀ -v /Volumes/D/
ddm_project:/home/jovyan/work`. The other argu-
ments in the command are explained in Fig. 4b.

After running the `docker run . . .` command, 
a URL appears at the end of the terminal output (Fig. 2, 
middle panel). You can copy and paste this URL “http:// 
127.0.0.1:8888/?token=. . .” into any web browser (e.g., 
Firefox or Chrome) to launch a Jupyter interface based 
on the dockerHDDM container. If the URL does not load 
properly, check whether port 8888 is being used by 
other Docker containers or programs. If so, close  
those containers or programs. Alternatively, you may 
change the port, for example, use port 7777 (i.e., set 

`-p 7777:8888`); in this case, you should replace 
the “8888” in the URL to “7777” (e.g., “http://127.0.0.1:7
777/?token=. . .”). You can then open or initialize a Jupy-
ter notebook2 to code, run, and view the output directly. 
Note that the `--rm` flag included in the command 
means that the dockerHDDM container, along with any 
data or newly installed Python modules, will be deleted 
when the container stops. However, any files or data 
mounted to the container from the `$(pwd)` path will 
remain unaffected. This ensures the reproducibility of 
the computing environment. If you wish to modify the 
computing environment, for example, by installing addi-
tional Python modules, we recommend that you first 
read the Docker API before removing `--rm` directly.

In the Jupyter interface, you will find two files and 
two folders (Fig. 2, middle). The notebook docker-
HDDM_workflow.ipynb offers a detailed reproduction of 
the analyses presented in this article, which we discuss 
further in “Example of Workflow.” In contrast, the 

pulldocker hcp4715 /hddm :latest

Using docker to execute this command

Pull/download an image from docker hub

Image’s name

Handle of a tag of the image

Docker hub account that maintain the image

a

b

rundocker
hcp4715/hddm:latest jupyter notebook

\

Run a container

-it --rm
8888:8888-p$(pwd):/home/jovyan/work-v

Mount a volume,
localPath:containerPath
Map container port,
hostPost:containerPort
Continue the command
in a new line*

Run container interactively
Clean up containers and
delete files on container exit

The docker image (and its tag)
to run the container

Open jupyter notebook

Fig. 4.  Docker commands to download and run dockerHDDM. (a) Download/pull dockerHDDM 
from the Docker hub. The command by default downloads the latest version of `hcp4715/dock 
erHDDM` if the image tag is not specified. The CPU architecture (Apple or Intel chips, correspond-
ing to ARM64 and AMD64 architectures, respectively) is automatically recognized when the image 
is downloaded. (b) Command to start a container. Note, “\” separates different lines of a command 
in Linux and MacOS terminals but not in Windows.

http://127.0.0.1:8888/?token=
http://127.0.0.1:8888/?token=
http://127.0.0.1:7777/?token=
http://127.0.0.1:7777/?token=
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notebook dockerHDDM_Quick_View.ipynb provides a 
brief overview of the dockerHDDM image’s new features 
and an introduction to basic modeling processes. One 
folder is “work,” which mounts the local path into the 
docker environment. The other folder, “OfficialTutorials,” 
contains notebooks that reproduce the official tutorials 
available at https://hddm.readthedocs.io/en/latest/tuto 
rials.html. Beginners can follow HDDM_Basic_Tutorial.
ipynb to get a basic understanding of HDDM, as dis-
cussed in Wiecki et al. (2013); HDDM_Regression_Stim 
coding.ipynb covers more advanced models with regres-
sion, in which parameters can vary based on experimental 
conditions and other covariates; Posterior_Predictive_
Checks.ipynb introduces posterior predictive checks 
(PPCs), showing how to generate predicted data from 
fitted parameter posteriors and how to analyze these pre-
dicted data; LAN_Tutorial.ipynb introduces advanced use 
of LAN functions that address the problematic likelihood 
of more complicated models based on neural-network 
methods (Fengler et al., 2021).

Novel Features of dockerHDDM

The dockerHDDM_Quick_View.ipynb illustrates two 
novel features in dockerHDDM (compared with HDDM 
installed directly without Docker): parallel computing 
for MCMC chains and creating InferenceData data for 
ArivZ analyses (as shown in the <Code Block 1>):

<Code Block 1>
```Python
# define a simple model with preloaded 
data
model = hddm.HDDM(data)

# origin model fitting code
# model.sample(500, burn = 100)

# dockerHDDM new model fitting code
model.sample(
  500, burn = 100,
  chains = 4,  # parallel computing for  
    MCMC chains
  return_infdata = True,  # return  
    InferenceData for ArivZ analysis
  sample_prior = True, loglike = True, ppc  
    = True,
  save_name = ‘example’
)
```

For all models defined by methods such as `hddm.
HDDM()` or `hddm.HDDMRegressor()`, the user  
can employ the `.sample()` method to run the  
MCMC algorithm for model fitting. The original HDDM 

provided two main parameters to set the MCMC algo-
rithm; the first parameter was the number of samples 
(`500`), and the second was the number of burn-ins 
(`burn=100`).3

In dockerHDDM, we included five extra arguments 
in `.sample()` method to provide parallel computing 
for MCMC chains and create InferenceData.

To preserve compatibility and consistent output with 
origin HDDM, the arguments are configured with the fol-
lowing defaults: ̀ return_infdata=False`, ̀ sample_
prior=False`, `loglike=False`, `ppc=False`, 
`save_name=None`, and `chains=1`.

The `chains` argument determines the number of 
MCMC chains. Using more than two chains triggers mul-
tithreaded parallel computation, which can significantly 
reduce the time when multiple chains are needed to 
compute model diagnosis index R̂  (see “Model Diagno-
sis”). The number of parallel MCMC chains is limited by 
the number of available CPU cores/threads available. 
For example, the maximum number of chains for a com-
puter with four cores (eight threads) is eight. Setting the 
“chains” argument more than eight may degrade perfor-
mance. Nonetheless, whenever possible, a number of 
four chains is commonly used.

The `return_infdata`argument converts HDDM 
results into the InferenceData structure,4 accessible via 
`model.infdata`, by default set to `False` to main-
tain compatibility with original HDDM output. In addi-
tion, we have included `loglike` for computing and 
saving log-likelihood values (see “Model Comparison”), 
`ppc` for PPCs (see “PPC”), and ̀ sample_prior=True` 
for calculating Savage-Dickey density ratio (Wagenmak-
ers et al., 2010) to approximate Bayes’s factor (BF; see 
“Statistical Inference”). When setting ̀ ppc` as ̀ True`, 
it defaults to generating 500 predictions for each 
observed data, but users can adjust this by adding argu-
ment `n_ppc`. Likewise, when setting `sample_
prior` as `True`, it defaults to sampling 2,000 draws 
for each prior parameter, but users can adjust this by 
adding argument `n_prior`.

Finally, the ̀ save_name` argument specifies the path 
and file name for saving the model and InferenceData, 
which is convenient for reusing results. One can load 
the model using `model = hddm.load(‘example.
hddm’)` and the InferenceData with `infdata = 
az.from_netcdf(‘example.nc’)`.

Example of Workflow

In this section (Fig. 2, bottom panel), we demonstrate 
how to use dockerHDDM (i.e., HDDM and ArviZ) to 
perform key steps of Bayesian modeling (Gelman et al., 
2020; Martin et al., 2024): model specification and fitting, 
model diagnosis, model comparison, PPC, and statistical 
inference. The code reproduced in this section can be 

https://hddm.readthedocs.io/en/latest/tutorials.html
https://hddm.readthedocs.io/en/latest/tutorials.html
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found in dockerHDDM_Workflow.ipynb in the docker-
HDDM environment.

Example Data

For convenience, we use the data from Cavanagh et al. 
(2011), which is built within HDDM, as an example to 
demonstrate how to implement the modeling workflow. 
This data set contains response time and choice data from 
14 Parkinson’s patients (see Table 3). In the experiment, 
participants were asked to choose between two options 
associated with either high or low reward values (i.e., 
reward probabilities in typical reinforcement-learning 
tasks). The relative value differences between the two 

options define two levels of conflict: high conflict for 
low-low and high-high trials (“HC” in variable “conf”) and 
low conflict for low-high trials (“LC” in variable “conf”).

Note that HDDM requires the inclusion of three col-
umns of variables, “subj_idx,” “rt,” and “response,” to con-
struct the hierarchical model. This means that when 
analyzing your own data, these three columns of variables 
must appear in the data set with identical column names. 
In addition, the unit of “rt” must be seconds, and “response” 
is coded as 1 for the upper boundary of the corresponding 
choice and 0 for the lower boundary (for more details, see 
https://hddm.readthedocs.io/en/latest/howto.html).

Model Specification

As a demonstration of model specification, we test an 
example question: Is there an effect of conflict levels on 
drift rate (Wiecki et al., 2013). To answer the question, we 
constructed three computational models (see Table 4).

Model 0 served as the baseline without considering 
the effect of conflict level on the model parameters. The 
model contains the seven parameters, referred to as the 
full DDM, including the decision boundary (a), drift rate 
(v ), nondecision time (t), decision bias (z ), and sv , st , 
and sz , which indicate the trial-by-trial variations of v , 
t , and z ( ., ; & , )Boehm et al Ratcliff Tuerlinckx2018 2002 .

By default, HDDM considers the hierarchical-model-
ing approach that includes parameters at both the indi-
vidual and the group levels (see Box 3). Model 0 has 11 
population-level parameters, including the means and 
the standard deviations for the four basic parameters  
(a/v/t/z ) and three parameters (sv/st/sz ) for the inter-
trial variations. At the individual level, each subject also 

Table 3.  Example Data Set From Cavanagh et al. (2011)

subj_idx rt response conf

0 1.21 1.0 HC
0 1.63 1.0 LC
0 1.03 1.0 HC
0 2.77 1.0 LC
0 1.14 0.0 HC

Note: The data structure required for HDDM is long-format data, where 
each row represents one trial. “subj_idx is” the subject index, “rt” is 
the response time (in seconds), and “response” in this case represents 
the accuracy, where 1 is correct and 0 is incorrect. These three 
columns of data are mandatory when using HDDM and must be kept 
consistent with the column names and the units (rt, seconds). “conf” is 
an optional variable, corresponding to the conflict level, where “HC” 
denotes high conflict and “LC” denotes low conflict. “conf” is not a 
mandatory variable or column, meaning that different factor names and 
levels can be used depending on the experimental design. In addition, 
multiple variables may be maintained in the data, which may be 
categorical or continuous.

Table 4.  Models Used in This Tutorial

Models Describe
HDDM functions for defining a model (`df` 

is the data from Cavanagh et al., 2011) n params

Model 0 Baseline hddm.HDDM(df, include=[‘a’, ‘v’, 
‘t’, ‘z’, ‘sv’, ‘sz’, ‘st’])

67

Model 1 Varying drift rates across 
conditions

hddm.HDDM(df, include=[‘a’, ‘v’, 
‘t’, ’z’, ‘sv’, ‘st’, ‘sz’], 
depends_on={‘v’: ‘conf’})

82

Model 2 Varying within-subjects drift 
rates across conditions

hddm.HDDMRegressor(df, “v ~ 1 
+ C(conf, Treatment(‘LC’))”, 
group_only_regressors=False, 
keep_regressor_trace=True, 
include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’, 
‘st’, ‘sz’])

83

Note: `hddm.HDDM()` is the default function for constructing a hierarchical drift-diffusion model. The `include` 
argument allows the addition of free parameters, which are fixed by default. The `depends_on` argument specifies a 
parameter (e.g., v) that depends on a categorical independent variable (e.g., ‘conf’). The `hddm.HDDMRegressor()` 
is an HDDM function that includes effects of conditions in a linear regression fashion. The `keep_regressor_trace` 
argument allows a trace of the regressor to be kept, which is needed for posterior predictive checks. By default, the 
hierarchical regression allows only the intercept to vary across participants, and the slope is fixed at the population 
level. The `group_only_regressors = FALSE` argument additionally estimates the slopes at the individual level in 
the regression model.

https://hddm.readthedocs.io/en/latest/howto.html
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has a full set of four basic parameters, yielding a total 
of 56 14 4= ×  parameters. Thus, Model 0 has 11 56 67+ =  
free parameters.

Model 1 allows the drift rate to vary as a function of 
the conflict levels (i.e., ̀ depends_on={‘v’: ‘conf’}` 
in HDDM). Specifically, Model 1 sets two drift-rate vari-
ables each for low- and high-conflict levels at both the 
population and individual levels, respectively. Thus, 
Model 1 has 12 population-level parameters: the means 
and standard deviations for a , t , and z ; two means 
(“v_(LC)” and “v_(HC)”) and one standard deviation for 
v ; and three intertrial variability parameters (sv/st/sz ). 
Likewise, at the individual level, there are 5 (vLC/vHC /t/z/ 
a) × 14 (subjects) = 70 individual-level parameters. Thus, 
Model 1 has a total of 82 free parameters.

Note that Model 1 assumes complete independence 
between high and low levels of conflict within subjects. 
This assumption may be inappropriate because it is 
likely that a person who responded relatively quickly in 
the “LC” condition will also respond relatively quickly 
in the “HC” condition and vice versa. For more detailed 
differences between Model 1 and Model 2, see Box 3.

Model 2 was constructed to include correlations 
between drift rates across conflicting levels. In Model 2, 

we use a hierarchical regression model with `hddm.
HDDMRegressor()` by using the formula `v ~ 1 + 
C(conf, Treatment(‘LC’))` (see Box 3). This for-
mulation automatically assigns two free parameters, the 
intercept and slope, to each subject. Thus, there are 
5 14 70× =  individual-level parameters in Model 2. 
Accordingly, Model 2 has four parameters for v: “v_Inter-
cept” and “v_Intercept_std” are the mean and standard 
deviation of the intercept, and “v_C(conf)[T.HC]” and 
“v_C(conf)[T.HC]_std” are the mean and standard devia-
tion of the slope. Therefore, Model 2 has 13 population-
level parameters: the means and standard deviations for 
a , t , and z ; the means and standard deviations of the 
slope and the intercept of the regression for v ; and three 
intertrial variability parameters (sv/st/sz ). Taken together, 
Model 2 has a total of 13 + 70 = 83 free parameters.

Model fitting

The defined HDDM model allows the MCMC algorithm 
to be run using the `.sample()` method for model 
fitting and parameter estimation. The definition and fit-
ting of Model 2 are used here as an example (see <Code 
Block 2>):

Box 3.  Parameters in Hierarchical Drift-Diffusion Models

HDDM employs hierarchical Bayesian modeling by default, where each participant’s free parameters are sampled 
from population-level distributions (Wiecki et al., 2013). Taking full drift-diffusion model (DDM; Model 0) as an 
example, nondecision time p( )θ  is assumed to be drawn from a normal distribution: θ, where p y( | )θ  and y are 
the mean and standard deviation of the population-level normal distribution of nondecision time t. Likewise, θ/ 
p y( | )θ /θ and y/p y p y p( | ) ( | ) ( )θ θ θ∝ /R̂ are the means and standard deviations for the other three parameters, 
respectively. In addition, three free parameters R̂/p y y( )�| / �y indicate the trial-by-trial variability of nondecision 
time (y), drift rate (yi), and initial bias (i n= …1 2 3, , ,... , ), which are estimated only at the population level.

(continued)

Note: The hierarchical structure of the full DDM in HDDM. The parameters inside and 
outside the rectangle are subject and population level parameters, respectively. p i/  are 
the indices of participants (p P= 1 2, , ..., ) and trials (i N= …1 2, , . ), where xi p,  is the data 
(choice/response time) of the ith trial in the pth subject.

Full DDM: hddm.HDDM(data, include=[‘z’, ‘sv’, ‘sz’, ‘st’])
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Consequently, there are a total of 11 population-level parameters. At the subject level, subjects have their 
own estimate of the parameter of a, v, t, z, leading to a total of yi subject-level parameters. Thus, in the full 
DDM, the number of parameters is 11 plus log p y( )�|θ .

HDDM provides two types of priors: weakly informative priors and noninformative priors. By default, 
dockerHDDM uses weakly informative priors as summarized in the table below (Wiecki et al., 2013). The default 
informative priors are suitable for most perceptual tasks. However, for tasks with longer response times, it is 
recommended to use noninformative priors. In this case, one has to set the parameter `informative=False` 
when defining the model, for example, `m = hddm.HDDM(data, informative=False)`.

HDDM also allows parameters to vary with variables by integrating hierarchical linear regression models 
(also called “linear mixed models” or “multilevel models”). Specifically, the `hddm.HDDMRegressor()` 
function allows any or all of the four parameters of DDM (a, v, t, z) to be modeled as a function of 
experimental conditions or other variables (e.g., EEG signal). In HDDM, the regression models are defined 
using the Python package patsy (see https://patsy.readthedocs.io/en/latest/quickstart.html), which uses the 
same syntax for defining regression functions as in other commonly used statistical packages. For example, in 
Model 2 in the main text, we used the expression `v ~ 1 + C(conf, Treatment(‘LC’))`, where the term 
to the left of “~” is the dependent variable and the term to the right of “~” is the regression equation. The term 
‘1’ refers to the intercept, which corresponds to the variable �y in the output. The term ‘C(conf, 
Treatment(‘LC’))’ indicates the slope coefficient, which corresponds to the variable θ. As in other hierarchical 
regression models, both the intercept and the slope can be estimated at the population level and the subject 
level (referred to as “fixed effects” and “random effects” or “varying effects,” respectively; D. J. Johnson et al., 
2017; Pedersen & Frank, 2020; Wiecki et al., 2013), depending on how the model is specified. In `hddm.
HDDMRegressor()`, the default is hierarchical model with random intercept but no random slope. We need 
to set `group_only_regressors=False` to include the random slope (as we did in Model 2).

Although both the `depends_on` argument and the `HDDMRegressor` function allow parameters to vary 
with discrete variables (e.g., conflict levels), there is an important difference between them. The `depends_
on` argument defines the parameter split by condition. Specifically, the means of the parameters under each 
condition are derived from a share prior, whereas the variability of the parameters is consistent across 
conditions. The `HDDMRegressor` function defines the relation between parameters and condition by a 
linear model specification, which means the intercept and slope in the linear regression both have their own 
priors. In a word, `depends_on` is unable to use within-subjects effects because each subject’s condition is 
derived from the population prior, whereas `HDDMRegressor` allows subjects to have their own intercept, 
which allows for the estimation of within-subjects variation across conditions. Thus, the choice of model 
definition is relevant to the assumptions made about the relationship between parameters and the 
experimental conditions. For more details, see Wiecki et al. (2013).

 

DDM parameters’ informative prior

mv~ ( , )N 2 3 σv ~ ( )HN 2 v p v v~ ( , )N µ σ2

ma~ ( . , . )G 1 5 0 75 σa ~ ( )HN 2 ap a a~ ( , )G µ σ2

mz invlogit~ ( ( . , . ))N 0 5 0 5 σz ~ ( . )HN 0 05 z p z z~ ,N ( )µ σ2

mt~ ( . , . )G 0 4 0 2 σt ~ ( )HN 1 t p t t~ ( , )N µ σ2

sv ~ ( )HN 2 st ~ ( . )HN 0 3 sz ~ ( , )B 1 3

Note: Table extracted and refined from Wiecki et al. (2013). N  represents a 
normal distribution parameterized by the mean (m) and standard deviation (σ). 
HN  represents a half-normal distribution, which is a positive-only distribution 
parameterized by the standard deviation. G represents a gamma distribution, 
parameterized by the mean (m) and the rate (σ). B  represents a beta 
distribution, parameterized by alpha and beta. The term invlogit  represents 
the inverse logit function also known as the logistic function.

Box 3.  (continued)

https://patsy.readthedocs.io/en/latest/quickstart.html
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<Code Block 2>
```Python
# define a model by hddm.HDDMRegressor
m2 = hddm.HDDMRegressor(
    df, ‘v ~ C(conf, Treatment(‘LC’))’,
    group_only_regressors = False,
    keep_regressor_trace = True,
    include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’,  
      ‘st’, ‘sz’])
# fitting model and return InferenceData
m2_infdata = m2.sample(
    10000, chains = 4,
    save_name = ‘m2’, return_infdata = True,
    sample_prior = True, loglike = True,  
      ppc = True)
```

To accurately estimate parameters and ensure con-
vergence in hierarchical modeling, we set up four MCMC 
chains of 10,000 samples with 5,000 burn-ins (i.e., a total 
of 20,000 samples for each parameter). For the more 
detailed settings and arguments description, see “Novel 
Features of dockerHDDM.” With the new functionality 
introduced by dockerHDDM, we can calculate the log-
likelihood of the model and generate posterior predic-
tions after model fitting. Furthermore, the output of the 
model fitting can be converted into InferenceData, `m2_
infdata`, for subsequent analyses, as described in 
“Novel Features of dockerHDDM.”

We emphasize that model fitting is demanding in 
terms of computational resources and memory. For 
example, in our tests with the Apple M1 chip, Intel 
i7-10700 CPU, and AMD Ryzen 9-5900HX, model fitting 
took around 2 hr to 3 hr for 10,000 samples. Conse-
quently, fitting three models took about 6 hr to 9 hr, and 
memory usage ranged between 8 GB and 12 GB. In 
addition, if pointwise likelihood calculations (i.e., with 
the argument `loglike=True`) and posterior predic-
tive data generation (i.e., with the argument ̀ ppc=True`) 
are enabled, an extra 1 hr to 3 hr are needed for each 
model. More important, the memory consumption could 
escalate to 20 GB to 30 GB because pointwise likelihood 
and posterior predictive data generation will result in a 
large number of new data. See discussion for recom-
mendations to improve efficiency.

Model diagnosis

In Bayesian inference, it is crucial to ensure the conver-
gence of MCMC chains. With ArivZ, dockerHDDM sup-
ports both visual inspection and quantitative convergence 
checks (Martin et al., 2024, Chapter 10).

`az.plot_trace()` can be used to visualize the 
posterior distributions of parameters (i.e., trace plots of 
the MCMC, Fig. 5a).

The Gelman-Rubin statistics (R̂), and effective sample 
size (ESS) provide quantitative measures (see Box 1).

`az.rhat()`computes R̂, which should be close to 
1 for good convergence; values below 1.01 are typically 
recommended (Gelman & Rubin, 1992).

`az.ess()` calculates ESS, a measure of the preci-
sion of posterior estimates. If the ESS-bulk is over 400 
(see Box 1), the distribution’s center is well resolved, 
and we should ensure high ESS across all regions of the 
parameter space (Martin et al., 2024; Vehtari et al., 2021).

The latter two methods are covered by ArviZ’s `az.
summary()` (Fig. 5b).

Model comparison

Upon verifying chain convergence, we proceed with 
model comparison to identify the best-fitting model. The 
evaluation metric provided in the original HDDM is devi-
ance information criterion (Spiegelhalter et al., 2002). We 
include two more methods in dockerHDDM: widely 
applicable information criterion (WAIC; Watanabe, 2010) 
and Pareto-smoothed importance sampling leave-one-out 
cross-validation (PSIS-LOO-CV; Vehtari et  al., 2017). 
These methods comprehensively integrate posterior sam-
ples for model comparison and evaluation (see Box 4).

For the demonstration, we compared three models 
across all three evaluation metrics (lower value is bet-
ter).5 As shown in Table 5, Model 2 exhibits the lowest 
values on all three metrics, indicating it is the best 
model. The results of model comparison revealed that 
Models 1 and 2 are much better than the baseline Model 
0, suggesting that experimental conflict conditions have 
a substantial effect on drift rates. Moreover, Model 2 is 
slightly better than Model 1, suggesting that regression 
model may suit the data better. Nevertheless, the simi-
larities between Model 1 and Model 2 suggest that both 
models fit the data adequately in this case.

Note that WAIC and PSIS-LOO-CV require the point-
wise log-likelihood of each data point given a posterior 
sample of parameters, which must be computed using 
the likelihood function and posterior trace (see Box 1). 
This variable is not directly provided in the HDDM 
object and must be customized to be calculated via the 
likelihood function and posterior trace.

In dockerHDDM, the pointwise log-likelihood can  
be computed at the sampling and fitting stage, via `m.
sample(. . . , retutn_infdata = True, loglike =  
True)` (see <Code Block 2>), or after the model has 
been sampled and fitted, by ̀ m.to_infdata(loglike = 
True)`. Both ways return InferenceData, allowing users 
to immediately compute WAIC and PSIS-LOO-CV. After 
that, the evaluation metrics for each model’s Inference-
Data are available using ArviZ’s ̀ compare` method (see 
<Code Block 3>), which returns the results of WAIC for 
the argument `ic=“waic”` or PSIS-LOO-CV for 
`ic=“loo”`.
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b

a

Fig. 5.  Model diagnosis. (a) Visualization of the traces of all chains using `az.plot_trace()`, with the argument `var_names` set 
to focus on the parameter “v_Intercept” as an example. `compact=False` and `legend=True` ensured that the individual traces of 
each chain would be visible. The Markov chain Monte Carlo (MCMC) chains are valid and reliable when they fluctuate around a value 
and different chains are indistinguishable from each other, a scenario often referred to as a “caterpillar” shape. (b) Output of `az.
summary()`, which includes the mean and standard deviation of the Monte Carlo standard error (MCSE), the effective sample sizes 
(bulk-ESS and tail-ESS), and R̂. Note that the summary data frame has been sorted by R̂ so that we can easily compare the minimum 
and maximum values of R̂.
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Box 4.  Linking Deviance Information Criterion, Widely Applicable Information Criterion, and Pareto-Smoothed 
Importance Sampling Leave-One-Out Cross-Validation to Akaike Information Criterion

The deviance information criterion (DIC), widely applicable information criterion (WAIC), and Pareto-
smoothed importance sampling leave-one-out cross-validation (PSIS-LOO-CV) are criteria founded on the 
concept of out-of-sample predictive accuracy, that is, the accuracy of using the fitted model to predict new 
data generated by the assumed data-generating process. Predictive accuracy is often encapsulated by the log 
predictive density (Box 1). However, the log predictive density approximated using the observed data and the 
posterior estimates of parameters is biased, and an adjustment is required to correct the bias. Thus, the key 
difference between DIC, WAIC, and PSIS-LOO-CV lies in the difference between the two terms of log 
predicted density and corrected bias (see the table below).

DIC uses the Bayesian posterior means for estimating log predictive density and includes an adjustment 
based on the effective number of parameters ( �y). It is particularly suited for hierarchical models, offering an 
improved estimate of predictive density (Spiegelhalter et al., 2002).

WAIC further refines DIC, evaluating the log predictive density across the entire posterior and correcting 
bias via the variability of log predictive density (θ). This adjustment is crucial for measuring model robustness 
and guarding against overfitting (Watanabe, 2010). Both DIC and WAIC rely on estimating the effective number 
of parameters, but DIC assumes a Gaussian distribution for the likelihood, which simplifies the calculation 
(Lunn et al., 2012). In contrast, WAIC does not rely on this strict assumption and uses the full posterior 
distribution, offering greater flexibility and accuracy but at a higher computational complexity (Gelman et al., 
2014).

PSIS-LOO-CV estimates the predictive density by simulating the leave-one-out cross-validation, which by 
definition is the out-of-sample predictive accuracy, so bias correction is no longer needed for PSIS-LOO-CV. 
For more details on these three indices, see Gelman et al. (2014) and Vehtari et al. (2017).

 

Predictive accuracy Adjustment Formula

AIC log p y mle( | )θ̂ k − −2 ( ( | ) )ˆlog p y kθmle

DIC log p y Bayes( | )θ� PDIC − −( )2 ( | )log p y PBayes DICθ�
WAIC lpd� p̂WAIC − −2 ( )ˆlpd pWAIC

�
PSIS-LOO-CV elpd psis loo

�
− na − −2elpdpsis loo

Note: lpd�  = computed log pointwise predictive density, see Glossary for details; elpd psis loo
�

−  = 
expected log pointwise predictive density for a new dataset based on PSIS-LOO method; k = the 
count of model parameters; PDIC  = the DIC’s adjustment for the effective number of parameters 
(Spiegelhalter et al., 2002); p̂WAIC = the WAIC’s approach to adjusting the effective number of 
parameters (Watanabe, 2010). DIC = deviance information criterion; WAIC = widely applicable 
information criterion; PSIS-LOO-CV = Pareto-smoothed importance sampling leave-one-out cross-
validation.

<Code Block 3>
```Python
compare_dict = {
    ‘m0’: m0_infdata,
    ‘m1’: m1_infdata,
    ‘m2’: m2_infdata
}
az.compare(compare_dict, ic = ‘loo’)
```

Finally, we note that the model-comparison metrics allow 
only a relative ranking of alternatives. To assess the absolute 
goodness of fit of the model, we recommend performing 

the PPC, as discussed in the next section, alongside the 
diagnostic information provided by LOO and WAIC (see 
Martin et al., 2024, Chapter 5; Vehtari et al., 2017).

PPC

In addition to model comparison, which assesses relative 
performance, the PPC evaluates how well predictive data 
generated from posterior samples of parameters align 
with the actual data. PPC is crucial because model com-
parison evaluates only the “least worst” model, but this 
model may not necessarily account for the data very well 
(see Martin et al., 2024, Chapter 5).
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Table 5.  Model Comparison With Different Criteria

Ranka DIC PSIS-LOO-CV WAIC

1 m2 (10,654.89) m2 (10,646.25) m2 (10,646.20)
2 m1 (10,655.24) m1 (10,647.21) m1 (10,647.15)
3 m0 (10,835.24) m0 (10,824.93) m0 (10,824.89)

Note: DIC = deviance information criterion; PSIS-LOO-CV = Pareto-
smoothed importance sampling leave-one-out cross-validation; WAIC 
widely applicable information criterion; m0 = Model 0; m1 = Model 1; 
m2 = Model 2.
aRank is ranging from the best model to the worst.
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Fig. 6.  Posterior predictive check plot `az.plot_ppc()` for Model 0 “m0” and Model 2 “m2.” Solid black lines are the density plot of 
the observed response time (RT) data; blue lines are the posterior predictive samples; each line represents the predicted RT distribution 
based on one posterior predictive sample; yellow dashed lines represent the mean of all predicted RT distributions across all posterior 
predictive samples. (a) Results of the comparison between the two models (m0 vs. m2) at the individual level (Subjects 3 and 11 as an 
example). (b) Results of the comparison at the condition level (i.e., “LC” represents lower conflict, and “HC” represents higher conflict). 
All plots in the left column are for m0, and all plots in the right column are for m2. Note that the argument `coords` specifies the 
posterior-predictive-check level (individual or group level) that should be preprocessed before plotting. `num_pp_samples` is used to 
set the number of predictive data required for plotting.

synthetic data from Model 2 match more closely the 
actual data compared with the baseline Model 0, and 
this difference becomes apparent when examining PPC 
at the individual level (Fig. 6a) and condition level (Fig. 
6b). Other approaches for PPCs can be used to quantify 
accordance between data and model across quantiles of 
the response time (RT) distribution, for example, using 
Bayesian predictive versions of quantile probability plots 
(Frank et al., 2015; Ging-Jehli et al., 2021), and example 
code in HDDM is available on request.

Statistical inference

A final step in Bayesian modeling is to draw statistical 
inferences from the posterior parameter distributions in 

ArviZ offers convenient visualization tools for inspect-
ing PPC (Kumar et al., 2019). The function `az.plot_
ppc()` is helpful to visualize PPC at the individual or 
condition level (Fig. 6). In the demonstration, the 



Advances in Methods and Practices in Psychological Science 8(1)	 17

the best-fitting model. In our example, we test the 
hypothesis of whether drift rates significantly differ 
between HC and LC conditions based on Model2 (“m2” 
in the Notebook). This hypothesis is tested using the 
posterior samples of the regression coefficient in “m2,” 
which has a variable name “v_C(conf, Treatment(‘LC’))
[T.HC]”.

Note that there are several acceptable methods for 
Bayesian hypothesis testing, such as BFs (Boehm et al., 
2023; Wagenmakers et al., 2010), maximum a posteriori 
based p value (Mills, 2018), directional probabilities 
(Makowski et  al., 2019), and the full Bayesian signifi-
cance test (Kelter, 2022). In cognitive science and psy-
chology, although BFs are often advocated as a Bayesian 
alternative to frequentist p values (Kelter, 2021; van de 
Schoot et al., 2017; Wagenmakers et al., 2010), debate 
remains about which Bayesian measures should be used 
in which settings of scientific hypothesis testing (Kelter, 
2023; Makowski et al., 2019). Therefore, it is useful to 
consider various Bayesian hypothesis-testing methods 
depending on the study objectives and design (Kelter, 
2023; Kruschke, 2021; Makowski et al., 2019).

Here, we demonstrate Bayesian inference using  
an approach that combines the approach combining 
highest density interval (HDI) and the region of practical 

equivalence (ROPE; Kruschke, 2018; see Box 1). In addi-
tion, we provide methods for calculating BFs in the 
Appendix.

We define a ROPE of [–0.2, 0.2] to represent values 
practically equivalent to zero6 and use the `plot_pos-
terior()` function from ArviZ to implement the ROPE 
test. By comparing the 95% HDI of the regression coef-
ficient to this ROPE, we find that the HDI falls com-
pletely outside the ROPE (Fig. 7a), suggesting that the 
drift rate is higher in the LC condition than the HC 
condition (Fig. 7b).

Therefore, considering the results from various aspects 
(model comparison, PPC, and posterior inference),  
we conclude that the model that takes into account  
the influence of conflict level on drift rate performs the 
best. Moreover, HC affects the cognitive process of  
decision-making by impeding the speed of evidence 
accumulation.

Discussion

In this tutorial, we focus on an easy-to-use computa-
tional environment for HDDM, including installation of 
the tool, its features, and case applications. Although 
some conceptual discussions have been addressed in 
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Fig. 7.  (a) Statistical inference of parameters. The high-density interval (HDI; black line and texts) is compared with the region of 
practical equivalence (ROPE; red line and text). `var_names` argument can be used to select both group-level and individual-level 
parameters for analysis. `hdi_prob` argument specifies the probability of the HDI, typically set at 0.95 to correspond to a 95% con-
fidence interval. `rope` defines the limitations of ROPE, which is a range considered to be equivalent to the null hypothesis or a 
reference value for the parameter. The results show no overlap between the 95% HDI and the ROPE, indicating that the parameter is 
credibly different from zero. (b) Violin plot of parameter posteriors at two conflict levels. The black line is the 95% HDI, and the white 
dot is the mean. The drift rate is lower in high-conflict (HC) conditions than in low-conflict (LC) conditions.
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other articles (Boag et al., 2024; Shinn et al., 2020; Voss 
et  al., 2013), we nevertheless discuss some relevant 
issues below.

Why use dockerHDDM among tools?

Inference for the DDM can be implemented via multiple 
software/packages, such as fast-DM (Voss & Voss, 2007), 
flexDDM (LaFollette et al., 2024), rtdists (Singmann et al., 
2022), EZ-DDM (Wagenmakers et al., 2007), and pyDDM 
(Shinn et al., 2020). For more details on tool and algorithm 
comparisons, see Shinn et  al. (2020). Although all the 
above tools are estimated in a frequency framework and 
fit data at the individual-participant level, HDDM takes the 
Bayesian approach and estimates model parameters at 
both the individual and group levels (i.e., the hierarchical-
model or multilevel-model approach; see Wiecki et al., 
2013). Tools that also allow the Bayesian hierarchical 
modeling approach of DDM include brms based on RStan 
(Henrich et  al., 2023), the Wiener module in JAGS 
(Wabersich & Vandekerckhove, 2014), EMC2 (Stevenson 
et al., 2024), and hBayesDM (Ahn et al., 2017). For com-
parison between these tools and HDDM, see Table 6.

HDDM stands out for its ease of use, enabling users 
to construct and fit basic models with just a few lines of 
code. It facilitates the definition of complex mixed-
effects models without the need for prior specifications, 
making it more accessible for beginners. Although brms 
and EMC2 also define mixed-effects models well, they 
necessitate users to manually define prior distributions 
for random effects and covariance structures. In addition, 
RStan and JAGS require expertise in linear model repa-
rameterization. The absence of this expertise may result 
in model-fitting failures or biased estimates. On the other 
hand, the simplicity of HDDM comes at the cost of flex-
ibility because it restricts users to the default priors (see 
Box 3) and does not allow for customization. However, 
the weakly informative prior implemented in HDDM was 
based on previous meta-analyses of published results 

(Matzke & Wagenmakers, 2009) and applicable to typical 
cognitive experiments.

Another advantage of HDDM is its support for diverse 
accumulation models, including models with collapsing 
boundaries and those integrated with reinforcement 
learning, called “RLDDM” (Fengler et al., 2022; Pedersen 
& Frank, 2020; Pedersen et al., 2017). In addition, the 
latest version of HDDM provides many likelihood-free 
models, broadening its applications. For instance, its 
integration with neural networks, such as the LANs (like-
lihood approximation networks; Fengler et  al., 2021), 
has greatly enhanced the efficiency of model design and 
development.

A notable limitation of dockerHDDM is its lack of 
integration with the most advanced parameter-estimation 
techniques. For instance, its successors, HSSM and EMC2, 
have begun incorporating advanced MCMC methods. 
Moreover, innovative neural-network approaches, such 
as LANs (Fengler et al., 2021), MNLE (Boelts et al., 2022), 
and Bayesflow (Radev et al., 2022), have the potential 
to significantly enhance these estimation procedures. 
However, the mastery of these cutting-edge techniques 
requires a higher level of expertise to prevent misuse.

Consequently, we propose that the mission of dock-
erHDDM should be to streamline operations and lower 
the barrier to entry, facilitating analogical learning and, 
ultimately, preparing users for the transition to the more 
sophisticated methods.

Whether to include parameters’ 
intertrial variability?

As a demonstration, we used the seven-parameter full 
DDM. If a user wishes to fit only the four-parameter model, 
the unnecessary parameters can be removed from the 
include argument, for example, `include=[‘a’, ‘v’, 
‘t’, ‘z’]`. In contrast, the full model, which integrates 
trial-by-trial variability, is known for its robustness in fitting 
various data sets and accommodating extreme response 

Table 6.  Tools Comparison for Modeling Hierarchical DDM

(docker)HDDM brms/RStan/hBayesDM JAGS EMC2

Language Python R R R
MCMC Algorithm Metropolis-Hastings NUTS Gibbs sampling Particle Metropolis
Support models DDM, full DDM, 

RLDDM, collapsing 
boundary variants, etc.

DDM, full DDM DDM DDM, LBA, RDM, etc.

Custom prior No Yes Yes Yes
Linear mixed extension Yes Yes Yes Yes
Likelihood-free Yes No No No

Note: DDM = drift-diffusion model; MCMC = Markov chain Monte Carlo; RLDDM = reinforcement learning drift diffusion model; LBA = linear 
ballistic accumulator; RDM = racing diffusion model.



Advances in Methods and Practices in Psychological Science 8(1)	 19

times, including fast and slow errors (Schubert et al., 2017). 
However, Lerche and Voss (2016) argued that excluding 
trial-by-trial parameters can enhance the fit and recovery 
of fundamental parameters.

Consequently, the choice to include trial-by-trial vari-
ability requires a delicate balance between the predic-
tion and complexity of the model and the specific 
requirements of the data. Given the extensive data 
requirements for inferring across-trial variability, our 
stance is to cautiously include across-trial variability in 
the model for a more robust fit and more precise infer-
ence of the basic parameters (see similar discussion in 
Boag et al., 2024). For instance, because the variability 
of the nondecision time tends to be easily recovered 
(e.g., the result of the parameter recovery in Appendix 
Figure S2), it may be prudent to include only this param-
eter but not the other variability parameters by default. 
Nevertheless, when the data set is substantial and the 
research objective prioritizes the analysis of specific 
response-time patterns, such as fast or slow errors, the 
selective integration (the parameter variability of drift 
and start point; also see Table 1) of these parameters 
may be warranted. We recommend reading the work by 
Boehm et  al. (2018), which offers expert advice and 
recommendations on estimating across-trial variability 
parameters.

Data quantity and quality for fitting 
the DDM

Both the number of subjects and the number of trials 
should be considered. Because of the hierarchical nature 
of the model, hierarchical models typically require fewer 
trials than nonhierarchical models (Alexandrowicz & 
Gula, 2020; Wiecki et al., 2013). In general, 12 subjects 
are sufficient to obtain stable results (Wiecki et al., 2013), 
but we recommend collecting data from more than 20 
subjects for a more robust fit. However, the number of 
sufficient trials varies depending on the parameters of 
interest. For the basic four-parameter model, the number 
of trials has a small effect on parameter estimates  
(Alexandrowicz & Gula, 2020). Twenty trials appears to 
be the minimum standard, and more than 50 trials tend 
to produce robust results (Wiecki et al., 2013). Estimates 
of t and z  tend to be superior to those of a and v . To 
obtain more accurate estimates of v , a number of trials 
greater than 100 is recommended (Alexandrowicz & 
Gula, 2020). For parameters such as sv , st, and sz, a large 
number of trials are required for estimation, preferably 
more than 120 trials (Wiecki et al., 2013). Recent dis-
course has emphasized that the determination of the 
number of subjects and trials should be aligned with 
considerations of experimental design, desired target 
effects, and parameter recovery simulations (Boag et al., 

2024). For further empirical guidelines, see Boehm et al. 
(2018) and Lerche and Voss (2017).

Note that parameter estimation can be affected by 
extreme values, such as very fast response times. HDDM 
addresses this issue by assuming a mixture model in 
which a proportion of the response times are from a 
uniform distribution (Ratcliff & Tuerlinckx, 2002; Wiecki 
et al., 2013). The proportion of response times is con-
trolled by the parameter `p_outlier`, which is set to 
0.05 by default. This approach helps mitigate the effect 
of extreme values and ensures a more robust parameter 
estimation.

Finally, it is essential to conduct PPCs to validate the 
model (see “PPC”). These checks help to ensure that the 
model is capable of accurately reproducing the observed 
data, thus providing confidence in the evaluation of the 
model and parameters.

Computational resources and tips

To achieve accurate estimates, more subjects, more trials, 
and often more samples are required, leading to 
increased demands for computational resources. This is 
not unique to dockerHDDM; other tools using MCMC 
algorithms, such as DMC and brms mentioned earlier, 
are also affected by these factors. In the examples pro-
vided in this article, fitting each model with 14 subjects 
and 3,988 trials takes 2 hr to 3 hr and requires 8 GB to 
12 GB of memory. Running out of memory can cause 
the Jupyter kernel to suspend and restart, interrupting 
the process. Predictably, computational resources 
become a limiting factor with increasing data. To facili-
tate better model analysis, we offer the following tips 
and recommendations.

Initial testing.  When initially building the model, use 
subset data from a small number of subjects and reduce 
the MCMC sample size to verify that the model definition 
and code are correct. Once validated, increase the data 
and sample sizes.

Adjust memory settings.  If users experience a Jupyter 
kernel suspension or restart because of memory con-
straints, they can attempt to configure or increase virtual 
memory. For Windows users, it is necessary to check and 
remove the memory-usage limitations imposed by WSL 
(Windows Subsystem for Linux).

Separate execution.  Model fitting, calculation of point-
wise log likelihood, and generation of PPCs data can be 
executed separately. This approach helps prevent inter-
rupting long-running processes because of errors and 
ensures that each step can be independently validated and 
debugged before proceeding to the next.
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Notebook segmentation.  Fit models into separate note-
books to reduce the resource load of loading multiple 
models.

Model saving.  Save the fitted models and then load only 
the InferenceData files instead of the entire models to 
reduce resource usage.

Cloud deployment.  Docker is easily deployed in cloud-
computing environments (or use the docker image in Sin-
gularity). Use your institution’s computing services or rent 
cloud computing services to handle larger data sets.

Summary

In this article, we introduce dockerHDDM, a user-
friendly, out-of-the-box, and one-stop Docker image for 
implementing HDDM analysis within a modern Bayesian 
hierarchical workflow. Our dockerHDDM has three 
major advantages: (a) It leverages Docker to solve com-
patibility issues and simplify the installation process, (b) 
it ensures broad support across different machines 
equipped with either Intel or Apple chips, and (c) it 
integrates state-of-the-art Bayesian modeling practices 
with ArviZ, facilitating a more principled Bayesian work-
flow. We also provide a step-by-step video tutorial on 
how to use dockerHDDM.

Although we have provided a step-by-step guide to 
using dockerHDDM, it is unfortunately not possible to 
provide a comprehensive introduction to computational 

modeling. Given the extensive knowledge required for 
principled computational modeling, we recommend 
readers refer to the materials in Box 5 for a deeper 
understanding of the DDM family, computational model-
ing, hierarchical models, and Bayesian modeling. We 
expect that dockerHDDM and this detailed tutorial will 
reduce the technical burden and help readers get started 
with computational modeling. Ultimately, we hope that 
this tool and the computational-modeling concepts pre-
sented in the tutorial will promote the computational 
reproducibility of drift-diffusion modeling for users of 
all levels of computational expertise.

Appendix

Bayesian hypothesis testing with 
Savage–Dickey method

Another method to test the experimental effect is to 
compute the Savage-Dickey density ratio to approximate 
the Bayes factor (see Box 1). ArviZ provides the `plot_
bf` function to visualize the differences between prior 
and posterior distributions and compute the Bayes fac-
tor. Note that the Savage-Dickey ratio is related to the 
prior, which is weak in HDDM, resulting in very large 
Bayes-factor values. We therefore urge caution in using 
this method and that inference should be drawn by 
combining as many as possible (e.g., highest density 
interval or highest density interval + region of practical 
equivalence as mentioned in “Statistical Inference”).

Box 5.  Recommendation for Further Reading

A full understanding of how Bayesian hierarchical drift-diffusion modeling works requires not only basic 
knowledge of drift-diffusion modeling but also knowledge of Python programming, Bayesian statistics, and 
hierarchical regression models. This background knowledge is generally not part of the coursework in 
psychology or neuroscience education, although the situation has been changing in recent years. We 
recommend the following resources to quickly catch up and avoid misuse or abuse of hierarchical drift-
diffusion modeling.

Background knowledge/skills Resource

Bayesian statistics Etz & Vandekerckhove, 2018; Kruschke, 2014, 2018; Lambert, 2018; Martin 
et al., 2024; McElreath, 2020; van de Schoot et al., 2021.

(Bayesian) Hierarchical (regression)  
models

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/; https://github.com/lei-
zhang/BayesCog_Wien;

Capretto et al., 2020.
Computational modeling Blohm et al., 2020; Busemeyer, 2015; Busemeyer & Diederich, 2009; Etz & 

Vandekerckhove, 2018; Farrell & Lewandowsky, 2018; Lee & Wagenmakers, 
2014; Wilson & Collins, 2019; Zhang et al., 2020.

Drift-diffusion models Boag et al., 2024; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Voss et al., 
2013.

Sequential-sampling models beyond  
drift-diffusion models

Fengler et al., 2022; Forstmann et al., 2016; Ratcliff et al., 2016.

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/
https://github.com/lei-zhang/BayesCog_Wien
https://github.com/lei-zhang/BayesCog_Wien
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Figure S1.  Bayes factor test. This figure illustrates the prior (blue line) and posterior (orange line) density distributions for the drift-rate 
parameter under the conflict condition. The dashed vertical line represents the reference/null value (zero), and the black dot indicates 
the Bayes factor at this point. The notable difference between the probabilistic density of prior and posterior distributions at the refer-
ence value, which is used to calculate the Savage-Dickey density ratio and approximate the Bayes factor, provides evidence to accept 
or reject the experimental effect.

a

b Fig. S2. (continued on next page)

In Figure S1, the left panel displays the Bayes factor 
favoring the alternative hypothesis (BF BF10

236
011 5 10= × =. ,  

0), indicating extremely strong evidence supporting the 
alternative hypothesis over the null hypothesis. This 
implies that the conflict condition significantly affects the 
drift rate. The right panel shows the Bayes factor favoring 
the null hypothesis (BF BF10 010 14= =. ,  7.15), indicating 
moderate evidence supporting the null hypothesis over 
the alternative hypothesis. This suggests that there is no 
response bias, as evidenced by z being close to 0.5.

Parameter-recovery result

Wiecki et  al. (2013) demonstrated the superiority of 
Bayesian methods and hierarchical models for parameter 
recovery in HDDM. We illustrate the parameter recovery 
analysis of Model 2 in Figure S2. The results show that 
our model-fitting approach can yield good parameter 
recovery. For the code that repeats this result, see https://
github.com/hcp4715/dockerHDDM/blob/master/dock 
erHDDMTutorial/Parameter_recovery.ipynb.

https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb
https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb
https://github.com/hcp4715/dockerHDDM/blob/master/dockerHDDMTutorial/Parameter_recovery.ipynb
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Figure S2.  Model 2 parameter-recovery results. Blue is the true parameter, orange is the recovered parameter, white 
dots are the means, and the bar is the 95% highest density interval (HDI) range. Subplot A shows the parameter-
recovery results at the group level, including eight parameters, of which, the first five are basic parameters and the 
last three are trial-by-trial variants. Subplot B shows the parameter-recovery results at individual level, including five 
basic parameters for 13 subjects out of 65.
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Notes

1. Note that `/home/jovyan/{any_folder_name}` is a path 
mounted in the Jupyter Docker image and that `{any_folder_
name}` will be visible in the browser. The default username is 
`jovyan`, and it cannot be changed.
2. For beginners unfamiliar with Jupyter Notebook, do not panic! 
It is just an interface where you can write code and immedi-
ately check results. You may visit the official website at https://
jupyter.org/try-jupyter/notebooks/?path=notebooks/Intro.ipynb 
to try out a web-based platform online. The Jupyter website also 
provides extensive documentation for users who want to learn 
more about Jupyter Notebook and Python programming (see 
https://docs.jupyter.org/en/latest/).
3. To run the example notebooks faster, we use only 500 samples 
here. For a more in-depth understanding of the MCMC settings, 
we recommend reading van de Schoot et al. (2017); and Wiecki 
et al. (2013). The burn-in samples serve to calibrate the fitting, 
so the final samples need to exclude burn-in samples, yielding a 
total of 500 100 400– =  samples per chain. Generally, a larger 
number of samples improves the estimation accuracy of a model.
4. InferenceData is a more modern data construct that contains 
prior, posterior, and a posterior predictive samples and observed 
data, facilitating the visualization and analysis of multiple joint 
data sets (Hoyer & Hamman, 2017; Kumar et al., 2019).
5. Deviance information criterion can be extracted directly from 
the model rather than InferenceData, for example, `m0.dic`.
6. The ROPE should be tailored to the specific paradigm and 
research question (Dienes, 2021) and reflect the range of pos-
sible values for each parameter (e.g., Tran et  al., 2021). For 
example, a recent systematic parameter review of DDM found 
that the absolute value of a drift rate ranged from 0.01 to 18.51, 
with a median of 2.25 (Tran et al., 2021); another simulation and 
meta-analysis of conflict tasks showed that a drift rate between 
0.05 and 0.35 captured the conflict effect (Hedge et al., 2018). 
Thus, we choose ROPE [–0.2, 0.2] for illustrative purposes, imply-
ing that effects on drift rates smaller than 0.2 are not of interest.
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