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Abstract Current reinforcement-learning models often as-
sume simplified decision processes that do not fully reflect
the dynamic complexities of choice processes. Conversely,
sequential-sampling models of decision making account for
both choice accuracy and response time, but assume that de-
cisions are based on static decision values. To combine these
two computational models of decision making and learning,
we implemented reinforcement-learning models in which the
drift diffusion model describes the choice process, thereby
capturing both within- and across-trial dynamics. To exempli-
fy the utility of this approach, we quantitatively fit data from a
common reinforcement-learning paradigm using hierarchical
Bayesian parameter estimation, and compared model variants
to determine whether they could capture the effects of stimu-
lant medication in adult patients with attention-deficit hyper-
activity disorder (ADHD). The model with the best relative fit
provided a good description of the learning process, choices,
and response times. A parameter recovery experiment showed

that the hierarchical Bayesian modeling approach enabled ac-
curate estimation of the model parameters. The model ap-
proach described here, using simultaneous estimation of
reinforcement-learning and drift diffusion model parameters,
shows promise for revealing new insights into the cognitive
and neural mechanisms of learning and decision making, as
well as the alteration of such processes in clinical groups.
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Computational models have greatly contributed to bridging the
gap between behavioral and neuronal accounts of adaptive
functions such as instrumental learning and decision making
(Forstmann & Wagenmakers, 2015). The discovery that learn-
ing is driven by phasic bursts of dopamine coding a reward
prediction error can be traced to reinforcement-learning (RL)
models (Glimcher, 2011; Montague, Dayan, & Sejnowski,
1996; Rescorla & Wagner, 1972). Similarly, the current under-
standing of the neural mechanisms of simple decision making
closely resembles the processes modeled in sequential-
sampling models of decision making (Smith & Ratcliff, 2004).

RLmodels have been extended to account for the complex-
ities of learning—for example, by proposing different valua-
tions (Ahn, Busemeyer, Wagenmakers, & Stout, 2008;
Busemeyer & Stout, 2002) and updating of gains and losses
(Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Gershman, 2015), by accounting for the role of working mem-
ory during learning (Collins & Frank, 2012), and by introduc-
ing adaptive learning rates (Krugel, Biele, Mohr, Li, &
Heekeren, 2009). In contrast, the choice process during instru-
mental learning in RL is typically modeled with simple choice
rules such as the softmax logistic function (Luce, 1959),
which do not capture the dynamics of decision making (and

Electronic supplementary material The online version of this article
(doi:10.3758/s13423-016-1199-y) contains supplementary material,
which is available to authorized users.

* Mads Lund Pedersen
m.l.pedersen@psykologi.uio.no

* Guido Biele
guido.biele@neuro-cognition.org

1 Department of Psychology, University of Oslo, Oslo, Norway
2 Intervention Centre, Oslo University Hospital, Rikshospitalet,

Oslo, Norway
3 Department of Cognitive, Linguistic & Psychological Sciences,

Brown Institute for Brain Science, Brown University,
Providence, Rhode Island, USA

4 Norwegian Institute of Public Health, Oslo, Norway

Psychon Bull Rev (2017) 24:1234–1251
DOI 10.3758/s13423-016-1199-y

http://dx.doi.org/10.3758/s13423-016-1199-y
http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-016-1199-y&domain=pdf


hence are unable to account for choice latencies). Conversely,
these complexities are described well by the class of
sequential-sampling models of decision making, which in-
cludes the drift diffusion model (DDM; Ratcliff, 1978), the
linear ballistic accumulator model (Brown & Heathcote,
2008), the leaky competing accumulator model (Usher &
McClelland, 2001), and decision field theory (Busemeyer &
Townsend, 1993). The DDM of decision making is a widely
used sequential-sampling model (Forstmann, Ratcliff, &
Wagenmakers, 2016; Ratcliff & McKoon, 2008; Wabersich
& Vandekerckhove, 2013; Wiecki, Sofer, & Frank, 2013),
which assumes that choices are made by continuously
sampling noisy decision evidence accumulating until a
decision boundary is reached in favor of one of two alter-
natives. The key advantage of sequential-sampling models
like the DDM is that they extract more information from
choice data by simultaneously fitting response time (RT;
and the distributions thereof) and accuracy (or choice
direction) data. Combining the dynamic learning process-
es across trials modeled by RL with the fine-grained
account of decision processes within trials afforded by
sequential-sampling models could therefore provide a
richer description and new insights into decision process-
es in instrumental learning.

To draw on the advantages of both RL and sequential-
sampling models, the goal of this article is to construct a
combined model that can improve understanding of the
joint latent learning and decision processes in instrumen-
tal learning. A similar approach has been described by
Frank et al. (2015), who modeled instrumental learning
by combining Bayesian updating as a learning mechanism
with the DDM as a choice mechanism. The innovation of
the research described here is that we combined a detailed
description of both RL and choice processes, allowing for
simultaneous estimation of their parameters. The benefit
of using the DDM as the choice rule in an RL model is
that a combined model can capture various factors, in-
cluding the sensitivity to expected rewards, how they are
updated by prediction errors, and the trade-off between
speed versus accuracy during response selection. This en-
deavor can help decompose mechanisms of choice and
learning in a richer way than could be accomplished by
either RL or DDM models alone, while also laying the
groundwork to further investigate the neural underpin-
nings of these subprocesses by fitting model parameters
based on neural regressors (Cavanagh, Wiecki, & Cohen,
2011; Frank et al., 2015).

One hurdle for the implementation of complex models
of learning and decision making has traditionally been the
difficulty to fit models with a large number of parameters.
The advancement of methods for Bayesian parameter es-
timation in hierarchical models has helped address this
problem (Lee & Wagenmakers, 2014; Wiecki et al.,

2013). A hierarchical Bayesian approach improves the
estimation of individual parameters by assuming that the
parameters for individuals are drawn from group distribu-
tions (Kruschke, 2010), yielding mutually constrained es-
timates of group and individual parameters that can im-
prove parameter recovery for individual subjects (Gelman
et al., 2013).

In the following sections, we will describe RL models
and the DDM in detail, before explaining and justifying a
combined model. We will propose potential mechanisms
involved in instrumental learning, and describe models
expressing these mechanisms. Next, we compare how well
these models describe data from an instrumental-learning
task in humans. To show that combining RL and the
DDM is able to account for data and provide new insight,
we will demonstrate that the best-fitting model can disen-
tangle effects of stimulant medication on learning and de-
cision processes in attention-deficit hyperactivity disorder
(ADHD). Finally, to ensure that the model parameters
capture the submechanisms they are intended to describe,
we show that the generated parameters can successfully be
recovered from simulated data.

Reinforcement-learning models

RL models were developed to describe associative and
instrumental learning (Bush & Mosteller, 1951; Rescorla
& Wagner, 1972). The central tenet to these models is
that learning is driven by unexpected outcomes—for
example, the surprising occurrence or omission of
reward, in associative learning, or when an action results in
a larger or smaller reward than is expected, in instrumental
learning. An unexpected event is captured by the prediction
error (PE) signal, which describes the difference between the
observed and predicted rewards. The PE signal thus generates
an updated reward expectation by correcting past
expectations.

The strong interest in RL in cognitive neuroscience was
amplified by the finding that the reward PE is signaled by
midbrain dopaminergic neurons (Montague et al., 1996;
Schultz, Dayan, & Montague, 1997), which can then alter
expectations and subsequent choices by modifying synaptic
plasticity in the striatum (see Collins & Frank, 2014, for a
review and models).

RL models typically consist of, at least, an updating
mechanism for adapting reward expectations of choice op-
tions, and an action selection policy that describes how
choices between options are made. A popular learning al-
gorithm is the delta learning rule (Bush & Mosteller, 1951;
Rescorla & Wagner, 1972), which can be used to describe
trial-by-trial instrumental learning. According to this algo-
rithm, the reward value expectation for the chosen option i
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on trial t, Vi(t), is calculated by summing the reward ex-
pectation from the previous trial and the reward PE:

Vi tð Þ ¼ Vi t−1ð Þ þ η Rewardi t−1ð Þ−Vi t−1ð Þ½ �: ð1Þ

The PE is weighted with a learning rate parameter η, such
that larger learning rates close to 1 lead to fast adaptation of
reward expectations, and small learning rates near 0 lead to
slow adaptation. The process of choosing between options can
be described by the softmax choice rule (Luce, 1959). This
choice rule models the probability pi(t) that a decision maker
will choose one option i among all options j:

pi tð Þ ¼
e β tð Þ�Vi tð Þð Þ

X n

j ¼ 1
e β tð Þ�V j tð Þ½ �:

ð2Þ

The parameter β governs the sensitivity to rewards and the
exploration–exploitation trade-off. Larger values indicate greater
sensitivity to the rewards received, and hence more deterministic
choice of options with higher reward values. Following
Busemeyer and colleagues’ assumptions in the expectancy va-
lence (EV) model (Busemeyer & Stout, 2002), sensitivity can
change over the course of learning following a power function:

β tð Þ ¼ t=10ð Þc; ð3Þ
where consistency c is a free parameter describing the change
in sensitivity. Sensitivity to expected rewards increases during
the course of learning when c is positive, and decreases when c
is negative. Change in sensitivity is related to the exploration–
exploitation trade-off (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006; Sutton & Barto, 1998), in which choices are at
first typically driven more by random exploration, but then
gradually shift to exploitation in stable environments when
decision makers learn the expected values and preferentially
choose the option with the highest expected reward. The EV
model (Busemeyer & Stout, 2002) thus assumes that the con-
sistency of choices with learned values is determined by one
decision variable. Reward sensitivity normally increases (and
exploration decreases) with learning, but it can also remain
stable or even decrease, due to boredom or fatigue. Other RL
models, such as the prospect valence learning model, assume a
trial-independent reward sensitivity in which reward sensitivity
remains constant throughout learning (Ahn et al., 2008; Ahn,
Krawitz, Kim, Busemeyer, & Brown, 2011).

We hypothesized that the β sensitivity decision variable cap-
tures potentially independent decision processes that can be
disentangled using sequential sampling models, such as the
DDM, which incorporate the full RT distribution of choices.
For example, frequent choosing of superior options can result
from clear and accurate representations of the option values, from
favoring accurate over speedy choosing, or from a tendency to
favor exploitation over exploration. Conversely, frequent choos-
ing of inferior options can be caused by noisy and biased

representations of the option values, by a focus on speedy over
accurate choosing, or by the exploration of alternative options
with lower but uncertain payoff expectations. Using the DDM as
the choice function in an RL model can help to disentangle the
representations of option values from a focus on speed versus
accuracy (due to their differential influences on the RT distribu-
tions), and thus improve knowledge of the latent processes in-
volved in choosing during reinforcement-based decisionmaking.

Drift diffusion model of decision making

The DDM is one instantiation of the broader class of
sequential-sampling models used to quantify the processes un-
derlying two-alternative forced choice decisions (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Jones &
Dzhafarov, 2014; Ratcliff, 1978; Ratcliff & McKoon, 2008;
Smith & Ratcliff, 2004). The DDM assumes that decisions
are made by continuously sampling noisy decision evidence
until a decision boundary in favor of one of two alternatives
is reached (Ratcliff &Rouder, 1998). Consider decidingwheth-
er a subset of otherwise randomly moving dots are moving left
or right, as in a random dot-motion task (Shadlen & Newsome,
2001). Such a decision process is represented in Fig. 1 by
sample paths with a starting point indicated by the parameter
z. The difference in evidence between dot-motion toward the
left or toward the right is continuously gathered until a bound-
ary for one of the two alternatives (upper or lower boundary,
here representing Bleft^ and Bright^) is reached. According to
the DDM, accuracy and RT distributions depend on a number

Fig. 1 Main features of the drift diffusion model. The accumulation of
evidence begins at a starting point (z). Evidence is represented by sample
paths with added Gaussian noise, and is gathered until a decision
boundary is reached (upper or lower) and a response is initiated. High
and low drift rates are depicted as lines with high and low color saturation,
respectively. From BHDDM: Hierarchical Bayesian Estimation of the
Drift-Diffusion Model in Python,^ by Wiecki, Sofer, and Frank, 2013,
Frontiers in Neuroinformatics, 7, Article 14. Copyright 2013 by Frontiers
Media S.A. Adapted with permission
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of decision parameters. The drift rate (v) reflects the average
speed with which the decision process approaches the response
boundaries. High drift rates lead to faster and more accurate
decisions. The boundary separation parameter (a), which ad-
justs the speed–accuracy trade-off, describes the amount of
evidence needed until a decision threshold is reached. Wider
decision boundaries lead to slower and more accurate deci-
sions, whereas narrower boundaries lead to faster but more
error-prone decisions. The starting point (z) represents the ex-
tent to which one decision alternative is preferred over the
other, before decision evidence is available—for example, be-
cause of a higher occurrence or incentive value of this alterna-
tive. The nondecision time parameter (Ter) captures the time
taken by stimulus encoding and motor processes. The full
DDM also includes parameters that capture between-trial vari-
ability in the starting point, drift rate, and nondecision time
(Ratcliff & McKoon, 2008). To keep the model reasonably
simple, these will not be included in our combined model.
Although the DDM was initially developed to describe simple
perceptual or recognition decisions (Ratcliff, 1978; Ratcliff &
Rouder, 1998), there is a strong research tradition of using
sequential-sampling models to explain value-based choices,
including multiattribute choice and risky decision making
(Busemeyer & Townsend, 1993; Roe, Busemeyer, &
Townsend, 2001; Usher & McClelland, 2001). One of the ear-
liest applications of sequential-sampling models for value-
based choice (Busemeyer, 1985) also investigated decision
making in a learning context. Unlike the present research, this
research did not explicitly model the learning process, but fo-
cused instead on the qualitative predictions of sequential-
sampling models as opposed to fitting model parameters.

Importantly, the DDM and, more broadly, sequential-
sampling models of decision making not only successfully de-
scribe perceptual and value-based decisions in both healthy and
clinical populations (White, Ratcliff, Vasey, &McKoon, 2010),
but are also consistent with the neurobiological mechanisms of
decision making uncovered in neurophysiological and neuro-
imaging experiments (Basten, Biele, Heekeren, & Fiebach,
2010; Cavanagh et al., 2011; Cavanagh, Wiecki, Kochar, &
Frank, 2014; Forstmann et al., 2011; Frank et al., 2015; Hare,
Schultz, Camerer, O’Doherty, & Rangel, 2011; Kayser,
Buchsbaum, Erickson, & D’Esposito, 2010; Krajbich &
Rangel, 2011; Mulder, van Maanen, & Forstmann, 2014;
Nunez, Srinivasan, & Vandekerckhove, 2015; Pedersen,
Endestad, & Biele, 2015; Ratcliff, Cherian, & Segraves,
2003; Smith & Ratcliff, 2004; Turner, van Maanen, &
Forstmann, 2015; Usher & McClelland, 2001).

Reinforcement learning drift diffusion model

The rationale for creating a reinforcement learning drift diffu-
sion (RLDD) model is to exploit the DDMs ability to account

for the complexities of choice processes during instrumental
learning. A model describing the results of an instrumental
learning task in a DDM framework could be expressed in
several ways. We will therefore start with a basic model of
the decision and learning processes in instrumental learning,
and then describe alternative expressions of these processes.
Furthermore, we will compare how well the models fit data
from a common probabilistic RL task, and examine through a
posterior predictive check how well the best-fitting model
describes the observed choices and RT distributions.

The DDM calculates the likelihood of the RT of a choice x
with the Wiener first-passage time (WFPT) distribution,

RT xð Þ∼WFPT a; T er; z; v tð Þ½ �; ð4Þ
where the WFPT returns the probability that x is chosen with
the observed RT. In this basic RLDD model, the nondecision
time Ter, starting point z, and boundary separation a are trial-
independent free parameters, as in the ordinary DDM. The
drift rate v(t) varies from trial to trial as a function of the
difference in the expected rewards, multiplied by a scaling
parameter m, which can capture differences in the ability to
use knowledge of the reward probabilities:

v tð Þ ¼ Vupper tð Þ−V lower tð Þ
� �� m: ð5Þ

Vupper(t) and Vlower(t) represent the reward expectations for the
two response options. The scaling parameter also ensures that
V −Δ = Vupper − Vlower is transformed to an appropriate scale
in the DDM framework. V values are initialized to 0 and
updated as a function of the reward PEs at a rate dependent
on a free parameter, learning rate η (Eq. 1). In this basic model,
choice sensitivity is constant over time, meaning that equal
differences in V values will lead to the same drift rates, inde-
pendent of reward history (i.e., the exploitation–exploration
trade-off does not change over the course of learning). This
approach has previously been applied successfully to
instrumental-learning data in a DDM framework, in a model
that used Bayesian updating as a learning mechanism with no
additional free parameters (Frank et al., 2015). In contrast to
RL models, Bayesian updating implies a reduced impact of
feedback later during learning, because the distribution of pri-
or expectations becomes narrower as more information is in-
corporated. However, such a model does not allow one to
estimate the variants of RL that might better describe human
learning.

Drift rate

Whereas the basic model assumes constant sensitivity to pay-
off differences, it has been shown that sensitivity can increase
or decrease over the course of learning—for example, due to
increased fatigue or certainty in reward expectations, or due to
changes in the tendency to exploit versus explore (Busemeyer
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&Stout, 2002). Accordingly, an extended drift rate calculation
allows for additional variability by assuming that the
multiplication factor of V-Δ changes according to a power
function:

v tð Þ ¼ Vupper−V lower

� �� t=10ð Þp: ð6Þ

In this expression, the drift rate increases throughout learn-
ing when the choice consistency parameter p is positive,
representing increased confidence in the learned values, and
decreases when p is negative, representing boredom or fatigue.
The power function could also account for a move from explo-
ration to exploitation when reward sensitivity increases.

Boundary separation

In the basic model described above, the boundary separa-
tion (sometimes referred to as the decision threshold) is
assumed to be static. However, it could be that the bound-
ary separation is altered as learning progresses. Time-
dependent changes of decision thresholds could follow a
power function by calculating the threshold as a combina-
tion of a boundary baseline bb times the boundary power
parameter bp multiplied by trial t:

a tð Þ ¼ bb� t=10ð Þbp: ð7Þ

Learning rate

Several studies have reported differences in updating of
expected rewards following positive and negative PEs
(Gershman, 2015), which is hypothesized to be caused
by the differential roles of striatal D1 and D2 dopamine
receptors in separate corticostriatal pathways (Collins &
Frank, 2014; Cox, Frank, Larcher, Fellows, & Clark,
2015; Frank, Moustafa, Haughey, Curran, & Hutchison,
2007). We therefore assumed that V values could be
modeled with asymmetric updating rates, where η+ and η−

are used to update the expected rewards following positive
and negative PEs, respectively.

Model selection

The various mechanisms for drift rate, boundary separation,
and learning rate outlined above can be combined into different
models, and these models can be compared for their abilities to
describe data. Identifying a model with a good fit requires
several considerations (Heathcote, Brown, & Wagenmakers,
2015). First of all, a model describing latent cognitive processes
needs to be able to fit data from human or animal experiments.
To separate learning from choice sensitivities, we therefore fit
models on data from subjects performing a probabilistic

instrumental-learning task. To determine which model de-
scribed the data best, we first compared models on their relative
fits to the data, and then further ascertained the validity of the
best-fitting model by examining its absolute fit (Steingroever,
Wetzels, & Wagenmakers, 2014) through posterior predictive
checks (Gelman,Meng, & Stern, 1996). A useful model should
also have clearly interpretable parameters, which in turn de-
pends on the ability to recover the model parameters—that is,
the model must be possible to identify the generative parame-
ters. We therefore performed a parameter recovery experiment
as a final step to ensure that the fitted parameters described the
processes that we propose they describe.

Method

Instrumental-learning task

The probabilistic selection task (PST) is an instrumental-
learning task that has been used to describe the effect of do-
pamine on learning in both clinical and normal populations
(Frank, Santamaria, O’Reilly, & Willcutt, 2007; Frank,
Seeberger, & O’Reilly, 2004), in which increases in dopamine
boost relative learning from positive as compared to negative
feedback. On the basis of a detailed neural-network model of
the basal ganglia, these effects are thought to be due to the
selective modulation of striatal D1 and D2 receptors through
dopamine (Frank et al., 2004). The task has been used to
investigate the effects of dopamine on learning and decision
making in ADHD (Frank, Santamaria, et al., 2007), autism
spectrum disorder (Solomon, Frank, & Ragland, 2015),
Parkinson’s disease (Frank et al., 2004), and schizophrenia
(Doll et al., 2014), among others.

The PST consists of a learning phase and a test phase.
During the learning phase, decision makers are presented with
three different stimulus pairs (AB, CD, EF), represented as
Japanese hiragana letters, and learn to choose one of the two
stimuli in each pair on the basis of reward feedback. Reward
probabilities differ between the stimulus pairs. In AB trials,
choosing A is rewarded with a probability of .8, whereas B is
rewarded with a probability of .2. In the CD pair, C is
rewarded with a probability of .7, and D .3, and in the EF pair,
E is rewarded with a probability of .6, and F .4. Because
stimulus pairs are presented in random order, the reward prob-
abilities for all six stimuli have to be maintained throughout
the task. Success in the learning phase is to learn to maximize
rewards by choosing the optimal (A, C, E) over the suboptimal
(B, D, F) option in each stimulus pair (AB, CD, EF). Subjects
perform as many blocks (of 60 trials each) as required until
their running accuracy at the end of a block is above 65% for
AB pairs, 60% for CD pairs, and 50% for EF pairs, or until
they complete six blocks (360 trials) if the criteria are not met.
The PSTalso includes a test phase, which wewill not examine
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in the present research because it does not involve trial-to-trial
learning and exploration. Instead, we will focus on the learn-
ing phase of the PST, which can be described as a probabilistic
instrumental-learning task.

The data from the learning phase of the PST in Frank,
Santamaria, O’Reilly, and Willcutt (2007) were used to assess
the RLDD models’ abilities to account for data from human
subjects. We also used the task to simulate data from synthetic
subjects in order to test the best-fitting model’s ability to re-
cover the parameters. In the original article, the effects of
stimulant medication were tested in ADHD patients with a
within-subjects medication manipulation, and 17 ADHD sub-
jects were also compared to 21 healthy controls. In the present
study, we focused on the results from ADHD patients to un-
derstand the causes of the appreciable effects of medication on
this group. Subjects were tested twice in a within-subjects
design. The order of medication administration was random-
ized between the ADHD subjects. The results showed that
medication improved learning performance, and the subse-
quent test phase showed that this change was accompanied
by a selective boost in reward learning rather than in learning
from negative outcomes, consistent with the predictions of the
basal ganglia model related to dopaminergic signaling in stri-
atum (Frank, Santamaria, et al., 2007).

Analysis

Parameters in the RLDD models were estimated in a hierar-
chical Bayesian framework, in which prior distributions of the
model parameters were updated on the basis of the likelihood
of the data given the model, to yield posterior distributions.
The use of Bayesian analysis, and specifically hierarchical
Bayesian analysis, has increased in popularity (Craigmile,
Peruggia, & Van Zandt, 2010; Lee & Wagenmakers, 2014;
Peruggia, Van Zandt, & Chen, 2002; Vandekerckhove,
Tuerlinckx, & Lee, 2011; Wetzels, Vandekerckhove,
Tuerlinckx, &Wagenmakers, 2010), due to its several benefits
relative to traditional analysis. First, posterior distributions
directly convey the uncertainty associated with parameter es-
timates (Gelman et al., 2013; Kruschke, 2010). Second, in a
hierarchical approach, individual and group parameters are
estimated simultaneously, which ensures mutually constrained
and reliable estimates of both the group and the individual
parameters (Gelman et al., 2013; Kruschke, 2010). These ben-
efits make a Bayesian hierarchical framework especially valu-
able when estimating individual parameters for complex
models based on a limited amount of data, as is often the case
in research with clinical groups (Ahn et al., 2011) or in exper-
iments combining parameter estimates with neural data to
identify neural instantiations of proposed processes in cogni-
tive models (Cavanagh et al., 2011). In the context of model-
ing decision making, Wiecki et al. (2013) showed that a

Bayesian hierarchical approach recovers the parameters of
the DDM better than do other methods of analysis.

We used the JAGS Wiener module (Wabersich &
Vandekerckhove, 2013) in JAGS (Plummer, 2004), via the
rjags package (Plummer & Stukalov, 2013) in R (R
Development Core Team, 2013), to estimate posterior distri-
butions. Individual parameters were drawn from the corre-
sponding group-level distributions of the baseline (OFF) and
medication effect parameters. Group-level parameters were
drawn from uniformly distributed priors and were estimated
with noninformative mean and standard deviation group
priors. For each trial, the likelihood of the RT was assessed
by providing the WFPT distribution with the boundary sepa-
ration, starting point, nondecision time, and drift rate parame-
ters. Responses in the PST data were accuracy-coded, and
symbol–value associations were randomized across subjects.
It was therefore assumed that the subjects would not develop a
bias, represented as a change in starting point (z) toward a
decision alternative. To examine whether learning results in
a change of the starting point in the direction of the optimal
response, we compared the RTs for correct and error responses
in the last third of the experiment. Changes in starting point
should be reflected in slower error RTs (Mulder,
Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Ratcliff
& McKoon, 2008). We focused this analysis on the last third
of the trials, because in those trials subjects would be more
likely to maximize rewards and less likely to make explorato-
ry choices, which more frequently are Berroneous,^ but could
also be slower for reasons other than bias. Comparison of the
median correct and error RTs showed no clear RT differences,
such that the alternative hypothesis was only 1.78 times more
likely than the null-hypothesis (median error RT = 1.039
[0.406] s, median correct RT = 0.935 [0.373] s, BF10 = 1.78;
Morey & Rouder, 2015). Hierarchical modeling of median
RTs that explicitly accounted for RT differences between the
conditions showed the same results, whereas an analysis of all
trials showed even weaker evidence for slower error responses
(BF10 = 1.37). The starting point was therefore fixed at .5.
Nonresponses (0.011%) and RTs faster than 0.2 s (1.5%) were
removed prior to analysis.

To capture individual within-subjects effects of medication,
we used a dummy variable coding for the medication condi-
tion, and estimated for each trial the individual parameters for
OFF as a baseline and the individual parameters for ON as
baseline, plus the effect of medication (see The supplementary
materials for the model code). To assess the effect of medica-
tion, we report the posterior means, 95% highest density in-
tervals, and Bayes factors as measures of evidence for the
existence of directional effects. Because all priors for group
effects are symmetric, Bayes factors for directional effects can
simply be calculated as the ratio of the posterior mass above
zero to the posterior mass below zero (Marsman &
Wagenmakers, 2016).
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Relative model fit

Comparison of the relative model fits was performed with an
approximation to the leave-one-out (LOO) cross-validation
(Vehtari, Gelman, & Gabry, 2016). In our application, LOO
repeatedly excludes the data from one subject and uses the
remaining subjects to predict the data for the left-out subject
(i.e., subjects and not trials are independent observations). It
therefore balances between the likelihood of the data and the
complexity of the model, because both too-simple and too-
complex models would give bad predictions, due to under-
and overfitting, respectively. Higher LOO values indicate bet-
ter fits. To directly compare the model fits, we computed the
difference in predictive accuracy between models and its stan-
dard error, and assumed that the model with the highest pre-
dictive ability had a better fit if the 95% confidence interval of
the difference did not overlap with 0.

Absolute model fit

One should not be encouraged by a relative model comparison
alone (Nassar & Frank, 2016); the best-fitting model of those
devised might still not capture the key data. The best-fitting
model from the relative model comparison was therefore eval-
uated further to determine its ability to account for key features
of the data by using measures of absolute model fit, which
involves comparing observed results with data generated from
the estimated parameters. We used two absolute model fit
methods, based on the post-hoc absolute-fit method and the
simulation method described by Steingroever and colleagues
(Steingroever et al., 2014). The post-hoc absolute-fit method
(also called one-step-ahead prediction) tests a model’s ability
to fit the observed choice patterns given the history of previous
choices, whereas the simulation method tests a model’s ability
to generate the observed choice patterns. We used both
methods because models that accurately fit observed choices
do not necessarily accurately generate them (Steingroever et al.,
2014). Therefore, a model with a good match to the observed
choice patterns in both methods could, with a higher level of
confidence, be classified as a good model for describing the
underlying process. The methods were used as posterior pre-
dictive checks (Gelman et al., 2013) to identify the model’s
ability to re-create both the evolution of choice patterns and
the full RT distribution of choices.

In the post-hoc absolute-fit method, parameter value com-
binations were sampled from the individuals’ joint posterior.
For each trial, observed payoffs were used together with learn-
ing parameters to update the expected rewards for the next
trial. Expected rewards were then used together with decision
parameters to generate choices for the next trial with the
rwiener function from the RWiener package (Wabersich &
Vandekerckhove, 2014). This procedure was performed 100
times to account for posterior uncertainty, each time drawing a

parameter combination from a random position in the individ-
uals’ joint posterior distribution.

The simulation method followed the same procedure as the
post-hoc absolute-fit method, with the exception that the ex-
pected values were updated with payoffs from the simulated,
not from the observed, choices. The payoff scheme was the
same as in the PST task, and each synthetic subject made 212
choices, which was the average number of trials completed by
the subjects in the PST dataset. We accounted for posterior
uncertainty in the simulation method following the same pro-
cedure as for the post-hoc absolute-fit method.

Results

Model fit of data from human subjects

Relative model fit

We compared eight models with different expressions of latent
processes assumed to be involved in reinforcement-based de-
cision making, based on data from 17 adult ADHD patients in
the learning phase of the PST task (Frank, Santamaria, et al.,
2007). All models were run with four chains with 40,000
burn-in samples and 2,000 posterior samples each. To assess
convergence between the Markov chain Monte Carlo

(MCMC) chains, we used the R̂ statistic (Gelman et al.,
1996), which measures the degree of variation between chains

relative to the variation within chains. The maximum R̂ value
across all parameters in all eight models was 1.118 (four pa-
rameters in one model above 1.1), indicating that for each
model all chains converged successfully (Gelman & Rubin,
1992). The LOOwas computed for all models as a measure of
the relative model fit.

The eight models tested differed in two expressions for cal-
culating drift rate variability, two expressions for calculating
boundary separation, and either one or two learning rates (see
Table 1 for descriptions and LOO values for all tested models).
All models tested had a better fit than a pure DDM model
assuming no learning processes—that is, with static decision
parameters (Table 1, Supplementary Table 1). The drift rate was
calculated as the difference between expected rewards multi-
plied by a scaling parameter, which was either constant (m) or
varied according to a power function (p; see above). The trial-
independent scaling models (mean LOO: –16.75) provided on
average a better fit than the trial-dependent scaling models
(mean LOO: –16.805), although this difference was weak (con-
fidence interval of the difference: –0.019, 0.128).

Similarly, boundary separation was modeled as a fixed pa-
rameter or varied following a power function, changing across
trials. The models in which the boundary was trial-dependent
had on average a better fit (mean LOO: –16.573) than the
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models with fixed boundary separations (mean LOO: –
16.983), and this effect was strong (confidence interval of
difference: 0.172, 0.648). Separating the learning rates for
positive and negative PEs (mean LOO: –16.699) resulted in
an overall better fit (confidence interval of difference: 0.052,
0.264) than using a single learning rate (mean LOO: –16.857).

Pair-wise comparison of the model fits revealed that two
models (Models 6 and 8) had a better fit than the other models
(see Supplementary Table 1). Themean predictive accuracy of
Model 6 was highest, but it could not be confidently distin-
guished from the fit of Model 8. Nevertheless, Model 6 had a
slightly better fit (–16.488 vs. –16.506) and had all the prop-
erties favored when comparing across models, in that its drift
rate was multiplied by a constant scaling factor, the boundary
separation was estimated to change following a power func-
tion, and learning rates were split by the sign of the PE
(Table 1). On the basis of these results, we selected Model 6
to further investigate how an RLDD model can describe data
from the learning phase of the PST, and to test its ability to
recover parameters from simulated data.

Absolute model fit

The four chains of Model 6 (Table 1) converged for all group-

and individual-level parameters, with R̂ values between 1.00
and 1.056 (see https://github.com/gbiele/RLDDM for model
code and data). There were some dependencies between the

group parameters (Fig. 2), in particular a negative correlation
between drift rate scaling and the positive learning rate.

Comparing models using estimates of relative model fit
such as the LOO does not assess whether the models
tested are good models of the data. Absolute model fit
procedures, however, can inform as to whether a model
accounts for the observed results. A popular approach to
estimate absolute model fit is to use posterior predictive
checks (Gelman et al., 2013), which involve comparing
the observed data with data generated on the basis of
posterior parameter distributions. Tests of absolute model
fit for RL models often include a comparison of the evo-
lution of choice proportions (learning curves) for observed
and predicted data. To validate sequential-sampling models
like the DDM, however, one usually compares observed
and predicted RT distributions. Because the RLLD models
use both choices and RTs to estimate parameters, we cre-
ated data with both the post-hoc absolute-fit method and
the simulation method procedures described above
(Steingroever et al., 2014), and visually compared the sim-
ulated data with the observed experimental data on mea-
sures of both RT and choice proportion (visual posterior
predictive check; Gelman & Hill, 2007).

Posterior predictive plots for the development of choice
proportions over time are shown in Fig. 3. For each subject,
trials were grouped into bins of ten for each difficulty level.
The average choice proportions in each subject’s bins were
then averaged to give the group averages shown in Fig. 3.
The leftmost plots display the mean development of observed
choice proportions in favor of the good option from each
difficulty level for the OFF and ON medication conditions.
The middle and rightmost plots display the mean probabilities
of choosing the good option on the basis of the post-hoc ab-
solute-fit method and the simulation method, respectively.
The degree of model fit is indicated by the degree to which
the generated choices resemble the observed choices. From
visually inspecting the graphs, it is clear that while ON med-
ication, the subjects on average learned to choose the correct
option in all three stimulus pairs, whereas while OFF medica-
tion they did not achieve a higher accuracy than about 60% for
any of the stimulus pairs. The fitted model recreates this overall
pattern: Both methods identify improved performance in the
ON condition, which is stronger for the more deterministic
reward conditions, while also recreating the lack of learning
in the OFF group. The model does not recreate the short-term
fluctuations in choice proportions, which could reflect other
contributions to trial-to-trial adjustments in this task, outside
of instrumental learning—for example, from working memory
processes (Collins & Frank, 2012). Finally, the simulation
method slightly overestimated the performances in both groups.

The models described here were designed to account
for underlying processes by incorporating RTs in addition
to choices. Therefore, a good model should also be able to

Table 1 Summary of reinforcement-learning drift diffusion models

Model Drift
Rate
Scaling

Boundary
Separation

Learning
Rate

elpd Rank

1 constant fixed single –17.023 7

2 constant power single –16.600 3

3 power fixed single –17.108 8

4 power power single –16.697 4

5 constant fixed dual –16.891 5

6* constant power dual –16.488 1*

7 power fixed dual –16.909 6

8 power power dual –16.506 2

DDM NA fixed NA –17.860 9

In the Drift Rate Scaling column, Bconstant^ indicates that V-delta was
multiplied by a constant parameter m, whereas Bpower^ indicates that V-
delta was multiplied with a parameter p following a power function. For
Boundary Separation, Bfixed^ indicates that boundary separation was a
trial-independent free parameter, whereas Bpower^ means that boundary
separation was estimated with a power function. Under Learning Rate,
Bdual^ represents models with separate learning rates for both positive
and negative prediction errors, whereas Bsingle^ models estimate one
learning rate, ignoring the valence of the prediction error. The best-
fitting model is marked with an asterisk. elpd = expected log pointwise
predicitive density, NA = not applicable
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predict the RT distributions of choices. The posterior pre-
dictive RTs of choices based on the post-hoc absolute-fit
method and the simulation method are shown in Fig. 4 as
densities superimposed on histograms of the observed re-
sults. Responses in favor of suboptimal options are coded
as negative RTs. The results from both the post-hoc abso-
lute-fit method and the simulation method re-create the
result that overall accuracy is higher in the easier condi-
tions ON medication, while slightly overestimating the
proportion of correct trials OFF medication. The tails of
the distributions are accurately predicted for all difficulty
levels for both groups.

Effects of medication on learning and decision
mechanisms

We estimated group and individual parameters dependent
on the medication manipulation, both to test whether the
results from the model are in line with the behavioral
results reported by Frank, Santamaria, O’Reilly, and
Willcutt (2007) and to examine whether they can contrib-
ute to a mechanistic explanation of the processes driving
the effects of stimulant medication in ADHD (see the

Discussion section). Group-level parameters of the
within-subjects medication effects were used to assess
how the stimulant medication influenced performance
(Fig. 5 and Table 2; Wetzels & Wagenmakers, 2012).

Following Jeffreys’s evidence categories for Bayes
factors (Jeffreys, 1998), the within-subjects comparison
revealed strong or very strong evidence that medication
increased the drift rate scaling, nondecision time, and
boundary separation (Fig. 5). The results also indicated
substantial evidence that medication led to lower posi-
tive and negative learning rates.

Parameter recovery from simulated data

As a validation of the best-fitting RLDD model (Model 6,
Table 1), we performed a parameter recovery study by
estimating the posterior distributions of the parameters
on simulated data. We used estimated parameter values
from the original PST data to select plausible values for
the free parameters in the best-fitting model. Assigning
three values for each of the six parameters resulted in a
matrix with 36 = 729 unique combinations of parameter
values. The choice and RT data were simulated using

Fig. 2 Scatterplot and density of group parameter estimates from
posterior distributions off (red) and on (purple) medication.
bb = boundary baseline, bp = boundary power, eta_pos = learning

rate for positive prediction errors (PEs), eta_neg = learning rate for
negative PEs, m = drift rate scaling, Ter = nondecision time
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assigned parameter values. For each of the 729 combinations
of parameter values, we created data for five synthetic subjects
performing 212 trials each (the mean number of trials
completed in the PST dataset).

The model was run with two MCMC chains with 2,000
burn-in samples and 2,000 posterior samples for each chain.

The R̂ values for the posterior distributions indicated conver-

gence, with point estimate values of R̂ between 1 and 1.15 for

Fig. 3 Development of mean proportions of choices in favor of the
optimal option for the OFF (top row) and ON (bottom row) medication
groups, for (a) the observed data, (b) the post-hoc absolute-fit method,
and (c) the simulation fit method, across stimulus pairs AB, CD, and EF
(see panel legends), which had reward probabilities for the optimal and

suboptimal options of .8–.2, .7–.3, and .6–.4, respectively. The choices
were fit (b) and simulated (c) by drawing 100 samples from each subject’s
posterior distribution. For each subject, trials were grouped into bins of
ten for each difficulty level, and group averages were created from the
individual mean choice proportions for each bin

Fig. 4 Posterior predictive RT distributions across stimulus pairs, shown
separately for the OFF and ON medication groups. Gray histograms
display the observed results, and density lines represent generated

results from the post-hoc absolute-fit method and the simulation fit
method (in red and purple online, respectively). Choices in favor of the
suboptimal option are coded as negative
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all group and individual parameter estimations, with the ex-

ception of two parameter estimates of R̂ at 1.20 and 1.235.
Figure 6 displays the means of the posterior distributions for
the estimated parameters, together with the simulated param-
eter values. The figure shows that the model successfully re-
covered the parameter values from the simulations, with
means of the posterior distribution that were close to the sim-
ulated values across all parameters. The exception was the
estimated learning rates, in which the highest and lowest gen-
erated values were somewhat under- and overestimated, re-
spectively, but were still estimated to be higher and lower than
the estimations for the other generated values (i.e., there was a
strong correlation between the generated and estimated pa-
rameters). There were generally weak dependencies between

the parameters, with low correlations between the mean pa-
rameter estimates (Fig. 7).

Discussion

We proposed a new integration of two popular computa-
tional models of reinforcement learning and decision
making. The key innovation of our research is to imple-
ment the DDM as the choice mechanism in a PE learning
model. We described potential mechanisms involved in
the learning process and compared models implementing
these mechanisms in terms of how well they accounted
for the learning curve and RT data from a reinforcement-

Fig. 5 Posterior distributions of differences for ADHD subjects on
versus off stimulant medication, for boundary separation (a), drift rate
scaling (b), boundary change (c), nondecision time (d), and positive (e)

and negative (f) learning rates. Thick and thin horizontal bars below the
distributions represent the 85% and 95% highest density intervals,
respectively

Table 2 Summary of posterior distributions

ON OFF Contrast

Parameter m HDI m HDI m HDI BF

Boundary separation 1.849 1.524 2.178 1.659 1.424 1.882 0.19 –0.05 0.434 16.5

Boundary change 0.008 –0.1 0.111 0.018 –0.04 0.08 –0.01 –0.1 0.08 0.68

Drift rate scaling 3.566 1.886 5.618 1.864 0.721 2.995 1.702 –0.22 3.592 55.3

Nondecision time 0.326 0.233 0.422 0.224 0.162 0.287 0.102 0.03 0.179 227

Learning rate + 0.032 0.003 0.072 0.057 0.008 0.118 –0.02 –0.08 0.031 0.19

Learning rate – 0.023 0 0.08 0.04 0 0.12 –0.02 –0.11 0.046 0.24

Estimated means for off and on medication groups, as well as the contrast for on–off. Values in the HDI columns represent the 95% highest density
intervals. Bayes factors (BF) for directional effects are calculated as i/(1 – i), where i is the integral of the posterior distribution from 0 to +∞
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based decision-making task. Using the absolute fit and
simulation fit criteria as instantiations of posterior predic-
tive checks, we showed that the best-fitting model
accounted for the main choice and RT patterns of the
experimental data. The model included independent learn-
ing rates for positive and negative PEs, used to update the
expected rewards. The differences in expected rewards
were scaled by a constant, trial-independent factor to ob-
tain drift rates, and boundary separation was estimated as
a trial-dependent parameter. The model was further used
to test the effects of stimulant medication in ADHD, and
the treatment was found to increase that drift rate scaling
and nondecision time, to widen the boundary separation,
and to decrease learning rates. Finally, a parameter recov-
ery analysis documented that generative parameters could
be estimated in a hierarchical Bayesian modeling

approach, thus providing a tool with which one can simul-
taneously estimate learning and choice dynamics.

Limitations

A number of limitations can be traced to our decision to limit
the complexity of our new model. Since this was a first attempt
at simultaneously estimating RL and DDM parameters, we did
not estimate starting points or include parameters for trial-to-
trial variability in decision processes that are included in the full
DDM. These parameters are especially useful to capture a num-
ber of RT effects, such as differences in the RTs for correct and
error responses (Ratcliff & McKoon, 2008). Our modeling did
not fully investigate whether learning results in increasing drift
rates, or if learning results influences the starting point of the
diffusion process. Although the comparison of correct and error

Fig. 6 Parameter recovery results: Mean group parameter values (black
dots) for each of the 729 parameter combinations, separated by simulated
values. The horizontal color lines represent simulated parameter values,
and the boxplots represent distributions of the mean estimated values

separated by the simulated parameter values. bb = boundary baseline,
bp = boundary power, eta_pos = learning rate for positive prediction
errors (PEs), eta_neg = learning rate for negative PEs, m = drift rate
scaling, Ter = nondecision time
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responses revealed very weak evidence for their difference,
there was also no clear evidence that they were identical.
Hence, further research could explicitly compare models that
assume an influence of learning on the drift rate or starting
point. In addition, explicitly modeling posterror slowing
through wider decision boundaries following errors (Dutilh
et al., 2012) could have further improved the model fit. Still,
these additional parameters are likely not crucial in the context
of the analyzed experiment, because the posterior predictive
check showed that the model described the RT distribution data
well; for instance, the data did not contain large numbers of
slow responses not captured by the model.

A closer examination of the choice data reveals more room
to improve the modeling. Even though the learning model is
already relatively flexible, it cannot account for all of the choice
patterns. The model tended to overestimate learning success for
the most difficult learning condition, in which both choice op-
tions have similar reward probabilities (60:40). Also, whereas
the difference between the proportions of correct responses be-
tween learning conditions ON medication was larger at the
beginning of learning than at the end, the model predicted larger

differences at the end. Such patterns could potentially be cap-
tured by models with time-varying learning rates (Frank et al.,
2015; Krugel et al., 2009; Nassar, Wilson, Heasly, & Gold,
2010), by models that could explicitly account for capacity-
limited and delay-sensitive working memory in learning
(Collins & Frank, 2012), or by more elaborate model-based
approaches to instrumental learning (Collins & Frank, 2012;
Biele, Erev, & Ert, 2009; Doll et al., 2014; Doll, Simon, &
Daw, 2012). Hence, whereas the model implements important
fundamental aspects of instrumental learning and decision mak-
ing, the implementation of additional processes might be need-
ed to fully account for the data from other experiments. Note,
though, that increasing the model complexity would typically
make it more difficult to fit the data, and thus should always be
accompanied by parameter recovery studies that test the inter-
pretability of the parameters. As is often seen for RL models,
our model did not account for short-time fluctuations in choice
behavior.We suggest that reduced short-time fluctuation in sim-
ulated choices can be attributed to the fact that the average
choice proportions in absolute-fit methods are the result of
100 times as many choices as in the original data, which

Fig. 7 Scatterplots and correlations between the mean parameter
estimates for each of the 64 parameter combination estimations. bb =
boundary baseline, bp = boundary power, eta_pos = learning rate for

positive prediction errors (PEs), eta_neg = learning rate for negative
PEs, m = drift rate scaling, Ter = nondecision time
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effectively reduces variation in the choice proportions between
bins. By comparison, the overestimation of learning when the
choice options have similar reward probabilities could point to a
more systematic failure of the model.

The parameter recovery experiment showed that we were
able to recover the parameter values. Although the results
showed that we could recover the precise parameter values
for the boundary parameters, nondecision time, and drift rate
scaling, it proved hard to recover the high and low learning
rates, especially for negative PEs. The fact that it is easier to
recover positive learning rates is likely due to the fact that
there are more trials with positive PEs, as would be expected
in any learning experiment. Still, it should be noted that we
were able to recover the correct order of the learning rate
parameters on the group level. Additional parameter recovery
experiments with only one learning rate for positive and neg-
ative PEs resulted in more robust recovery of the learning
rates, highlighting the often-observed fact that the price of
increased model complexity is a less straightforward interpre-
tation of the model parameters (results are available upon
request from the authors). In a nutshell, the parameter recov-
ery experiment showed that although we could detect which
group had higher learning rates on average, one should not
draw strong conclusions on the basis of small differences be-
tween learning rates on the individual level.

Effects of stimulant medication on submechanisms
of learning and choice mechanisms in ADHD

We investigated the effects of stimulant medication on learn-
ing and decision making (Fig. 5), both to compare these re-
sults with the observed results from the original article (Frank,
Santamaria, et al., 2007) and to assess the RLDD model’s
ability to decompose choice patterns into underlying cognitive
mechanisms. The original article reported selective
neuromodulatory effects of dopamine (DA) on go-learning
and of noradrenaline (NA) on task switching (Frank,
Santamaria, et al., 2007). A comparison of the parameters
could therefore describe the underlying mechanisms driving
these effects.

Learning rate

The within-subjects effect of stimulant medication identified
decreased learning rates for positive and negative feedback fol-
lowing medication. Although it might at first seem surprising
that the learning rate was higher off medication, it is important
to note that the faster learning associated with higher learning
rates also means greater sensitivity to random fluctuations in the
payoffs.We found a stronger positive correlation between learn-
ing rate and accuracy when patients were on as compared to off
medication, selectively for learning rates for positive PEs [inter-
action effect: β = 0.84, t(25) = 2.190, p = .038]. These results

show that patients had a more adaptive learning rate on
stimulant medication, and also suggest that a reasonably
higher scaling parameter for differences in reward expec-
tation is needed to detect the effects of learning rate on
learning success.

Drift rate scaling

The drift rate parameter in the RLDD model depends on both
learning rate and sensitivity to reward. The drift rate scaling
parameter in our model describes the degree to which current
knowledge is used, as well as the level of exploration versus
exploitation. Stimulant medication was found to increase sen-
sitivity to reward. These results are in line with the involve-
ment of DA in improving the signal-to-noise ratio of cortical
representations (Durstewitz, 2006) and striatal filtering of cor-
tical input (Nicola, Hopf, & Hjelmstad, 2004), and in main-
taining decision values in working memory (Frank,
Santamaria, et al., 2007). They are also supported by the op-
ponent actor learning model, hypothesizing that DA increases
sensitivity to rewards during choice, independently from
learning (Collins & Frank, 2014).

Boundary separation

Boundary separation estimates increased with medication, in-
dicating a shift toward a stronger focus on accuracy in the
speed–accuracy trade-off. This effect is particularly interest-
ing, in that it reveals differences in choice processes during
instrumental learning. It also extends the finding of impaired
regulation of the speed–accuracy trade-off during decision
making in ADHD (Mulder, Bos, Weusten, & van Belle,
2010) to the domain of instrumental learning. The effect can
be related to difficulties with inhibiting responses, in line with
the dual-pathway hypothesis of ADHD (Sonuga-Barke,
2003), since responses are given before sufficient evidence
is accumulated. A possible neural explanation of this effect
starts with the recognition that stimulant medication also
modulates NA levels (Berridge et al., 2006; Devilbiss &
Berridge, 2006), which, via the subthalamic nucleus
(STN), provides a global Bhold your horses^ signal to
prevent premature responding (Cavanagh et al., 2011;
Frank, 2006; Frank et al., 2015; Frank, Samanta, Moustafa,
& Sherman, 2007; Frank, Scheres, & Sherman, 2007;
Ratcliff & Frank, 2012).

Nondecision time

Finally, within-subjects contrasts identified a strong increase
in nondecision time through medication, which partially (over
and above changes in boundary separation) can explain the
finding of slower RTs in the medicated group (Frank,
Santamaria, et al., 2007). Why stimulant medication should
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affect nondecision time is not immediately clear. However,
faster nondecision times in ADHD have been reported in stud-
ies comparing DDM parameters on unmedicated children
with ADHD and in typically developing controls, with an
overall effect size of 0.32 (95% CI: 0.48–0.15; Karalunas,
Geurts, Konrad, Bender, & Nigg, 2014). The studies reporting
this effect could not find a clear interpretation or possible
mechanism driving this change, instead suggesting that it
might be related to motor preparation and not stimulus
encoding (Metin et al., 2013). Alternatively, increased com-
munication with STN through phasic NA activity could also
explain how the STN can suppress premature responses (Aron
& Poldrack, 2006).

Implications

Modeling choices during instrumental learning with
sequential-sampling models could be useful in several ways
to better understand adaptive behavior. One topic of increas-
ing interest is response vigor during instrumental learning
(see, e.g., Niv, Daw, Joel, & Dayan, 2006). Adaptive learners
adjust their response rates according to the expected average
reward rate, whereby adaptation is thought to depend on DA
signaling (Beierholm et al., 2013). The RLDD model could
inform about response vigor adaptations in several ways. For
example, average reward expectations in cognitive perceptual
tasks can be modeled through PE learning, whereas the
adaptation of boundary separation can function as an indica-
tor for the adjustment of response vigor. More generally, the
adaptive adjustment of response vigor should result in
reduced boundary separations over time in instrumental-
learning tasks, as well as (crucially) a greater reduction of
boundary separation for decision makers with higher average
reward expectations, which would be indicated by a higher
drift rate. On a psychological level, the joint consideration of
(change of) boundary separation and drift rate can help clarify
how the shift from explorative to exploitative choices,
fatigue, or boredom influence decisionmaking in instrumental
learning. In addition to supporting the exploration of basic RL
processes, the RLDDmodel should also be useful in shedding
light on cognitive deficiencies of learning and on decision
making in clinical groups (Maia & Frank, 2011; Montague,
Dolan, Friston, & Dayan, 2012; Ziegler, Pedersen,
Mowinckel, & Biele, 2016), as in the effect of stimulant
medication on cognitive processes in ADHD shown here
(Fig. 5), but also in other groups with deficient learning and
decision making (Mowinckel, Pedersen, Eilertsen, & Biele,
2015), such as in drug addiction (Everitt & Robbins, 2013;
Schoenbaum, Roesch, & Stalnaker, 2006), schizophrenia
(Doll et al., 2014), and Parkinson’s disease (Frank, Samanta,
et al., 2007; Moustafa, Sherman, & Frank, 2008; Yechiam,
Busemeyer, Stout, & Bechara, 2005).
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