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Human learning embodies a striking duality: Sometimes, we can rapidly infer and
compose logical rules, benefiting from structured curricula (e.g., in formal education),
while other times, we rely on an incremental approach or trial-and-error, learning better
from curricula that are randomly interleaved. Influential psychological theories explain
this seemingly conflicting behavioral evidence by positing two qualitatively different
learning systems—one for rapid, rule-based inferences (e.g., in working memory) and
another for slow, incremental adaptation (e.g., in long-term and procedural memory).
It remains unclear how to reconcile such theories with neural networks, which learn
via incremental weight updates and are thus a natural model for the latter, but are
not obviously compatible with the former. However, recent evidence suggests that
metalearning neural networks and large language models are capable of in-context
learning (ICL)—the ability to flexibly infer the structure of a new task from a few
examples. In contrast to standard in-weight learning (IWL), which is analogous to
synaptic change, ICL is more naturally linked to activation-based dynamics thought
to underlie working memory in humans. Here, we show that the interplay between
ICL and ITWL naturally ties together a broad range of learning phenomena observed
in humans, including curriculum effects on category-learning tasks, compositionality,
and a trade-off between flexibility and retention in brain and behavior. Our work
shows how emergent ICL can equip neural networks with fundamentally different
learning properties that can coexist with their native IWL, thus offering an integrative
perspective on dual-process theories of human cognition.

neural networks | in-context learning | cognitive flexibility | curriculum effects | compositionality

Humans are capable of two qualitatively distinct kinds of learning (1-9). The first
involves slow, incremental adaptation and storage in long-term or procedural memory
(2, 6, 9—12). The second is much more advanced and involves rapid inference of rules
or structure from information available in the environment or held in working memory
(WM; 10, 13-18). For example, when learning chess, it can take years to develop the
subtle, tacit intuitions required to evaluate complex positions, though initially one may
make rapid inferences about how the pieces move.

Many findings support the idea that humans exhibit different learning and generaliza-
tion behaviors in different domains (1, 5, 9, 10, 14, 19—21). On the one hand, in tasks
that are readily described by simple rules (e.g., inferring how the knight moves in chess),
humans learn efficiently from only a few examples (“few-shot learning”), appearing to
make rapid inferences about the latent structure governing the task (15, 22, 23). When
this latent structure is compositional, humans can generalize by flexibly recombining
familiar elements according to inferred rules (24-32). In such settings, people exhibit a
blocking advantage, learning better when information is organized into blocks of related
examples that make this underlying structure more salient (5, 19, 24, 33). On the other
hand, when a task is not governed by simple rules, learning may require integrating across
multiple task dimensions. This kind of learning proceeds more incrementally (1, 5, 34),
but can also be associated with greater retention after a delay (10, 21, 35, 36). In these
contexts, compositional generalization is not possible, and, as shown in both laboratory
(5,37) and real-world contexts (38, 39), people exhibit an interleaving advantage, learning
better when trials are randomly shuffled over time.

The traditional way of explaining how such contrasting effects can arise in different
learning contexts is to posit two separate systems with qualitatively different properties.
Prominent dual-process accounts (1, 4, 5, 40) hypothesize that when a task can be
solved by inferring simple rules, a symbolic or rule-based system is deployed, whereas
in the absence of such simple rules, a procedural or subsymbolic system is recruited.
However, recent findings in machine learning have shown that a single neural network,
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Fig. 1. (A) Properties of in-context learning (ICL) and in-weight learning (IWL). IWL (red) is the usual form of learning in neural networks, wherein errors are
backpropagated to update weights. IWL can support better retention but is noncompositional, depicted here as failing to generalize on a compositional task
(Fig. 3) where color and animal features determine x and y coordinates, respectively. IWL exhibits an interleaving advantage, learning better when examples are
randomly shuffled or interleaved. Metalearning over a distribution of tasks allows a neural network to learn how to learn new tasks from just a few examples
given in context (46). Once it emerges, ICL (blue) is carried out through activation dynamics (blue arrow) and can have different learning properties than those
realized in IWL. For example, ICL can be flexible and compositional, and is shown here leveraging the attention mechanism of the transformer to compose
rules inferred from the study examples. ICL can also exhibit a blocking advantage, learning better when related examples are blocked over time. (B) Dynamic
interplay between ICL and IWL. When ICL is successful, fewer errors are accumulated and therefore less IWL occurs.

whose default learning occurs via incremental weight updates or
in-weight learning (IWL; 41, 42), can through extensive training
on a variety of tasks acquire an emergent capacity for in-context
learning (ICL; 43-47). ICL is the ability to flexibly adapt to
the rules of new tasks from a few demonstrations or instructions
provided in context. For example, if a novel task is demonstrated
with contextual inputs (strawberry — red, banana — yellow),
trained networks such as large language models (LLMs) often
readily generalize to new inputs (plum — ??). This kind of
learning can also be understood as a form of inference and does not
require additional weight updates but can occur within the flow
of information from inputs to outputs through the network’s
activation dynamics (43, 44, 48, 49). This is similar to how
neural network models of the prefrontal cortex (PFC) utilize
their activation-based dynamics to make inferences and flexibly
adapt to the current context (13, 18, 50-52). While much work
has focused on the factors that drive the emergence of ICL
(e.g., 44), less emphasis has been placed on how it can interact
with the usual IWL. Here, we consider how the interplay between
these learning mechanisms can explain a variety of phenomena
in human cognition, exploring how they may account for various
findings motivating traditional dual-process theories.

IWL operates by backpropagating errors to incrementally up-
date weights and is a natural model of procedural or subsymbolic
learning (41, 42). Yet because neural networks have traditionally
relied exclusively on IWL, they have often failed to explain key
aspects of rule-based human cognition. Indeed, neural networks
are notoriously data hungry compared to human learners (15)
and have been criticized for failing to account for human few-
shot learning and compositionality (25, 29, 53-55), as they
do not explicitly represent symbols or infer rules (15, 56, 57).
Furthermore, in contrast to the blocking advantage that humans
exhibit in rule-based tasks (5, 19), neural networks suffer from
“catastrophic forgetting” in these scenarios because new IWL can
overwrite information stored in the same weights during previous
blocks (58—60).

ICL offers a natural framework for understanding how a
neural network can acquire such qualitatively different learning
properties. The ICL abilities that emerge in LLMs have led to
surprising success on rule-governed tasks involving reasoning
(43, 61, 62), analogy (63, 64), and compositionality (49, 65, 60).
However, ICL does not come for free, but emerges only
after extensive training: The usual IWL mechanisms, when
applied over a large and diverse dataset, support a form of
“metalearning,” in which the network learns to efficiently utilize
its activation dynamics to flexibly adapt to new scenarios (see
Fig. 1; 48, 67-71). In other words, over the course of learning
many different tasks, these networks learn how to learn new tasks
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efficiently from a few examples provided as inputs (“in context”).
Such metalearning can reproduce human-like compositional
generalizations (31, 49, 72) and can also induce neural network
models of the PFC to acquire rule-based inference abilities
(13, 18, 71).

Once ICL has emerged, the network’s learning behavior will
not be exclusively determined by ICL or IWL but will typically
lie on a continuum between them. A natural trade-off governs
this relationship (44, 73, 74): When ICL succeeds, fewer errors
accumulate, resulting in fewer weight updates and therefore less
IWL (Fig. 1B). We therefore hypothesized that when ICL was
effective, the network would exhibit its metalearned properties,
but when ICL made errors, the resulting weight updates would
expose the network’s default IWL behavior. Notably, cognitive
neuroscience studies have demonstrated a related trade-off in
human learning. When information can be learned rapidly within
working memory, neural prediction errors are suppressed (9, 14,
75). This neural signature predicts enhanced generalization of
rule-like structure (14) but degraded retention when information
is no longer available in working memory (21, 35, 36). Thus,
the dynamic interaction between ICL and IWL may allow a
single neural network to express different learning properties in
different situations, while simultaneously reproducing a trade-off
observed in human learning.

In this work, we demonstrate how a single neural network
capable of both ICL and IWL can replicate the behavioral effects
associated with the two systems posited in traditional dual-process
theories (1, 4, 5), producing compositional generalizations and
a blocking advantage in rule-based tasks, while exhibiting an
interleaving advantage in tasks lacking simple rules. Moreover,
we show how the very same mechanisms give rise to the trade-
off between flexibility and retention observed in human learning
(14, 21, 36). Our theoretical framework comprises three key
principles, summarized in Table 1.

We test this framework with metalearning transformer neural
networks (76) trained on tasks from human studies (5, 9, 24). A
distinguishing feature of the transformer is its “attention heads,”
which isolate and process subsets of the inputs and can learn
which inputs are relevant for particular predictions. For example,
when given the above task (plum — ??) a trained transformer
may use its attention heads to focus on the fruits and colors
provided in context, and subsequently constrain its activations
to access color-relevant information (77, 78). Transformers
develop ICL more reliably compared to traditional neural
networks (44), perhaps because attention provides a natural way
for contextual information to dynamically steer representations
according to the context (e.g., “plum” ~~» “purple”). As such,
this mechanism resembles those in biological models of PFC,
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Table 1. Theoretical framework

(1) Properties of IWL IWL fails on compositional
generalization problems, shows an
interleaving advantage due to
catastrophic forgetting when trials
are blocked, and results in better
retention.

ICL can generalize compositionally
and show a blocking advantage,
but results in worse retention.

When ICL is possible, its properties
dominate because few errors are
made, suppressing IWL. But when
ICL is difficult, the properties of
IWL dominate because errors
result in larger weight updates.

(2) Properties of ICL

(3) Dynamic interplay

where activation-based dynamics can guide processing toward
task-relevant information (13, 18). Although much remains
unknown about the fine-grained computations carried out during
ICL, it is clear that in transformers it must rely at least partially
on the attention mechanism (77-79). However, we note that the
basic principles governing the interplay between ICL and I'WL
(Fig. 1B) should apply to any network architecture.

Our experiments (80) show how this dynamic interplay offers
a unified account of learning phenomena observed in humans
across a wide range of studies from cognitive psychology and
neuroscience.” First, we show in a category-learning setting
(5) that, like humans, a single neural network capable of
ICL and IWL produces a blocking advantage on rule-like
tasks, and an interleaving advantage in the absence of simple
rules. Second, we show that the same neural network can
also produce compositional generalizations and their associated
blocking advantage (24). Third, we test LLMs on this same
compositional task without further training and show that ICL
in these models exhibits both compositionality and a blocking
advantage. Finally, we show how ICL depends on attention in
our models through causal manipulations, demonstrating how
the dynamic interplay between ICL and IWL naturally gives
rise to the trade-off between flexibility and retention observed in
recent human studies (9, 21, 35, 36).

The primary goal of this work is not simply to show that
neural networks can perform well on these cognitive tasks but to
demonstrate how the specific principles governing the dynamic
interplay between ICL and IWL naturally reproduce learning
phenomena observed in human studies. Our findings show how
these two qualitatively distinct learning processes can interact
within a single neural network model, and offer a framework
for reconciling dual-process theories of cognition with a neural
network perspective.

Results

Curriculum Effects in Category Learning. We first consider
whether the principles above can account for the curriculum
effects observed in human category learning, before turning
to compositionality in the next section. As summarized above,
human category learning exhibits an interaction (n, = 0.04)
between whether a task is rule-like, and the curriculum (blocked
vs. interleaved), showing a blocking advantage (4 = 0.47) when

*All code used for simulations is available at: https://github.com/jlrussin/icl-iwl-interplay.
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categories are governed by succinct rules, but an interleaving
advantage (4 = 0.33) otherwise (5).

We designed a category-learning task based directly on this

previous work (5), but suitable for use with metalearning neural
networks (Fig. 2 A-C). Stimuli varied along two feature dimen-
sions (akin to line length and line orientation) with 8 possible
values, yielding 64 possible items. Each item was assigned to one
of two categories, indicated by an arbitrary category label (e.g.,
“A” or “B”). In the Rule-like (or “Rule-based”) condition, one
of the two feature dimensions determined category membership
(e.g., lines with shorter lengths are in category “A” and lines
with longer lengths are in category “B”), while in the Rotated
(or “information-integration”) condition, category membership
was determined by both features. This simple rotation has been
shown to challenge the search for a simple, verbalizable rule, and
is thought to recruit the more incremental procedural learning
system in humans (1, 5). Networks were presented with 16
items from each category (32 total), and tested on the remaining
held-out items. The 32 items used during learning were either
Blocked, where items from one category were presented first,
followed by the items from the other, or Interleaved, where
items were randomly shuffled. Both rotation conditions were
tested with both curriculum conditions, yielding a 2 x 2 design.
IWL produces an interleaving advantage. To isolate the learning
properties of IWL in this category-learning setting, a randomly
initialized transformer was trained from scratch via the usual
IWL in each of the four conditions (see Materials and Methods
for details). Because IWL requires slow, incremental updates,
this network was not capable of few-shot learning (Fig. 2D) even
in the rule-like condition, where a few examples should suffice
for inference of the simple rule. Consistent with our theoretical
framework (principle 1), the model performed better when trials
were interleaved compared to blocked (P < 1073 see Fig. 2 E
and F; see SI Appendix for details about all statistical testing), in
both the rule-like and rotated conditions (although slightly better
in the rule-like condition). This interleaving advantage was due to
catastrophic forgetting when trials were blocked (59, 60), which
can be seen in the dramatic decrease in accuracy on examples
of the category trained during the previous block (e.g., accuracy
on category “A” train trials decreases as category “B” is trained
in the second block). Thus, the default IWL behavior of neural
networks can explain why an interleaving advantage would be
observed in human category learning (5). However, a network
capable of IWL alone cannot account for the blocking advantage
that humans exhibit when categories are governed by simple rules
(5,19, 24).
ICL can produce a blocking advantage. Next, we endowed a
transformer with ICL abilities by having it metalearn on a
distribution of categorization tasks (see Materials and Methods
for details), analogous to the way humans improve at rapidly
learning new tasks throughout development. These ICL abilities
allowed the network to solve unseen tasks given in context, even
when weights were frozen and no IWL was allowed to occur.
Rather, ICL was accomplished via activation dynamics enabled
by attention to contextual information, which we confirm below
with causal manipulations (Fig. 5).

To ensure that ICL would have the desired properties (see
principle 2), we had the network metalearn on a distribution of
categorization tasks with 1) rule-like structure and 2) blocked cur-
ricula. To isolate these learning properties of ICL, we evaluated
the network in the few-shot setting, where the weights were frozen
and the network had to learn new tasks from examples given in
context (see Materials and Methods for details; see red vs. blue lines
in Fig. 2G). As predicted, when the model had developed ICL
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Fig. 2. Category-learning experiments. The task is derived from a human study (5). Transformer neural networks were presented with multifeature items
along with their category labels and tested on unseen items. (A) Curriculum conditions. Trials were either blocked by category or randomly interleaved. (B) In the
rule-like condition, category membership was determined by a simple rule based on only one of the two features. (C) In the rotated (information-integration)
condition, category membership was jointly determined by both features. The original axes were rotated by 45° and a category boundary was chosen in the
new coordinate system. (D-F) Category-learning with in-weight learning (IWL) only. Randomly initialized networks were trained from scratch on the task. (D) The
few-shot evaluation tested networks' ability to learn the task from the 32 examples presented in context, before any weight updates were made. Unsurprisingly,
networks without prior metalearning experience were incapable of utilizing examples given in context to learn the task. Note that model choices were not
constrained to the two category labels, so chance performance here corresponds to 1/dy, where dy is the vocabulary size. (E) Without prior metalearning, the
network was able to learn via IWL, performing well on both the rule-like and rotated tasks after training. However, performance was much worse in the blocked
condition due to catastrophic forgetting. Values correspond to accuracy on the 32 train items. (F) Accuracy and loss results over the course of task-specific
training. Accuracy is split by category. (G-/) Category learning with both IWL and in-context learning (ICL). Randomly initialized networks metalearned on a
distribution of rule-like tasks with blocked curricula and were subsequently trained on specific category-learning tasks. (G) After metalearning, the models
exhibited strong ICL, as shown by high few-shot test accuracy. ICL exhibited a blocking advantage and also showed improved performance in the rule-like
compared to the rotated condition. (H) After training had occurred on a specific task, the network exhibited an interleaving advantage in the rotated condition,
due to catastrophic forgetting when trials were blocked. (/) Accuracy and loss results over the course of task-specific training. When trials were blocked in the
rule-like condition, ICL achieved near-perfect accuracy, resulting in little loss and thus little IWL. When trials were interleaved, few-shot test accuracy was worse,
but performance quickly recovered due to compensation by IWL. In the rotated condition, ICL failed, resulting in larger losses and increased IWL. This IWL
resulted in catastrophic forgetting, as can be seen in the rapid decline in train accuracy on “A" items while training on “B,” and vice versa. No such catastrophic
forgetting occurred when trials were interleaved (although test performance was not perfect).

abilities by metalearning on rule-like category-learning problems,
it could generalize to held-out test items on new rule-like tasks,
but struggled to solve rotated tasks in context (main effect of
rotation on test accuracy: P < 1073). Moreover, ICL exhibited a
blocking advantage on unseen rule-like categorization tasks (main
effect of curriculum on test accuracy: P < 0.05). This blocking
advantage also emerged due to the fact that trials were blocked
during metalearning (S7 Appendix), but see Discussion for alter-
native explanations based on architectural constraints in human
brains. In sum, these few-shot results suggest that it is possible to
endow a network with ICL abilities that are sensitive to rule-like
structure and learning curriculum: The network was capable of
making inferences over the items provided in context, but was
better at doing so when related items were organized into blocks.
Concurrent ICL and IWL reproduce both curriculum effects. While
the above explorations showed how IWL and ICL can produce
different curriculum effects, we are now in a position to study
how the two might interact in a single system capable of both.
To do this, we took the network that developed ICL abilities
through metalearning, and gave it unseen category-learning tasks,
allowing it to learn by ICL (via forward activation dynamics) and
IWL (via error backpropagation). Here, we predicted that the
dynamic interaction between IWL and ICL would qualitatively
reproduce the full set of curriculum effects observed in the
original study (5): ICL would produce the blocking advantage
in the presence of rule-like structure, while IWL would produce
the interleaving advantage in the absence of such structure (see
principle 3).

As we described above, when categories were governed by a
simple rule, ICL succeeded and exhibited a blocking advantage
on test trials in few-shot inference. But in the rotated task,
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where categories were not governed by simple rules, ICL
struggled (Fig. 2G). The resulting errors drove an increase in
IWL, producing an interleaving advantage due to catastrophic
forgetting (Fig. 27; interaction between curriculum and rotation
on train accuracy: P < 1073).

Taken together, these experiments show that a single model
capable of ICL and IWL can recapitulate the curriculum effects
observed in human category learning (5). When the network
is capable of making inferences over familiar rules, it can solve
new tasks from a few examples given in context. However, when
the environment does not afford such inferences or the network
cannot make them, IWL can still compensate, allowing good
performance. This IWL suffers from catastrophic forgetting,
resulting in an interleaving advantage on the rotated task.

Curriculum Effects in a Compositional Task. As noted above,
one of the most impressive recent developments in research on
neural networks has been the demonstration that ICL can give
rise to compositionality (49, 66, 72), traditionally considered to
be a major theoretical challenge to neural networks (25, 54).
Recent studies have shown that while standard TWL struggles
to reproduce human-like compositional generalization behaviors
(53, 81, 82), ICL can appear to compose inferred rules in
order to generalize to new inputs (49, 61, 65, 66). Thus,
a key goal of our framework is to leverage the distinction
between ICL and IWL to provide a unified account of both
the compositional generalization behaviors and the curriculum
effects observed in humans. In particular, ICL should account
for both the blocking advantage and the compositional gen-
eralization behaviors observed in tasks governed by rule-like
structure, while IWL accounts for the interleaving advantage ob-
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rotated condition, the original axes were rotated by 45°, so that any change in either color or animal resulted in a change to both coordinates. (D-F) Performance
on the compositional task with in-weight learning (IWL) only, where networks were trained from scratch. (D) The few-shot evaluation tested networks’ ability
to solve the task in context based on the 9 study examples. Without prior metalearning, neural networks were incapable of solving the task, regardless of
condition. (E) However, even without prior metalearning, the network was still able to learn via IWL, achieving high train accuracy on both the rule-like and the
rotated tasks after task-specific training. IWL again exhibited an interleaving advantage due to catastrophic forgetting. (F) Accuracy and loss results over the
course of IWL training. Accuracy is split by group, in this case corresponding to whether the cue was part of the row or the column. IWL exhibited catastrophic
forgetting in train accuracy when trials were blocked, regardless of rotation condition. IWL also failed to generalize compositionally, failing on the 16 held-out
test cues (green lines) in all conditions. (G-/) Experiments using networks capable of both IWL and ICL. (G) After metalearning, the models exhibited a blocking
advantage, but also showed strong compositional generalization, as shown by the high few-shot test accuracy in the blocked condition. ICL failed in the rotated
condition. (H) After task-specific training, the network exhibited an interleaving advantage in the rotated condition, due to catastrophic forgetting when trials
were blocked. (/) When trials were blocked in the rule-like condition, train accuracy was nearly perfect, resulting in little loss and thus little IWL. In the rotated
condition, ICL failed, resulting in larger losses and thus increased IWL, and increased catastrophic forgetting, as can be seen in the rapid drop in train accuracy
on the first group (“TrainA,” purple) while training on the second group (“TrainB,” orange), and vice versa. No catastrophic forgetting occurred in the interleaved

condition, but compositional generalization (green) was considerably worse.

served when such compositional generalization is challenging or
impossible.

We focused our investigations on a recent study demonstrating
compositional generalization in humans on a novel rule-governed
task, where the goal was not to categorize stimuli but to learn
a latent compositional coordinate system (see Fig. 3 A-C; 24).
Notably, this study showed that compositional generalization
improved when related trials were blocked (47/58 partici-
pants generalized) compared to interleaved (36/60 participants
generalized)—consistent with the idea that the mechanisms
underlying compositionality can be linked to those responsible
for producing the blocking advantage. This task therefore pro-
vides an excellent testbed for our metalearning neural networks,
allowing us to replicate the above curriculum-related results in
a different paradigm while also studying their connection to
compositionality.

In the original task, participants learned to pair colored animals
with arbitrary xy-coordinates via trial-and-error. Importantly,
the correct locations varied systematically with the two features:
Color determined the x-coordinate (each of 5 different colors was
linked to one of 5 different x-values) while the animal determined
the y-coordinate, or vice-versa. Participants saw only 9 of the
25 possible color—animal pairs as study examples; they had to
make novel inferences to generalize to the 16 remaining pairs
during testing (without feedback). This task can be seen as rule-
based in that a simple rule (e.g., color = x, animal = y) governs
the locations, and can be seen as compositional in that good
test performance requires composition of knowledge about a
particular color (e.g., “blue” means x = 3) with knowledge about
a particular animal (e.g., “alligator” means y = 2) into a novel
combination (e.g., “blue alligator” means location is 3, 2).

The key experimental variable manipulated in the study was
the curriculum—which 9 of the 25 cues were used as study
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examples, and the order in which they were presented (Fig. 34).
In the Blocked condition, all cues of a particular color (i.e.,
a single row/column) were presented before all the cues with
a particular animal, or vice-versa. In the Interleaved condition,
a single row and column were again chosen for study, but their
order was randomly shuffled.

The experimenters found that human compositional general-
ization performance depended on which curriculum was used:
Participants performed better in the blocked than the interleaved
condition (24)." The original study did not manipulate the
presence or absence of rule-like structure as the categorization
task did (5), but we hypothesized that rotating the underlying
coordinate grid (Fig. 3C) would cause a similar interleaving
advantage to emerge. This is because when the underlying
coordinate system is rotated, no simple rule (e.g., color = x,
animal = y) is available. We therefore tested our metalearning
models in both the original Rule-like setting, and in a Rotated
version.

IWL is noncompositional and produces an interleaving advantage.
As in the simulations with the categorization task, we first
isolated the learning properties of IWL by training transformer
neural networks without ICL capabilities on the task. Without
ICL, performing the task in the few-shot setting was again
impossible (Fig. 3D). The only way the network could learn was
through IWL over more extensive task-specific training, which
again exhibited an interleaving advantage (due to catastrophic
forgetting when trials were blocked; main effect of curriculum
on train accuracy: P < 1073; see Fig. 3 E and F). Furthermore,
while the network learned the study examples well when trials

Note that the original study also tested two other related conditions, where sampling
of items was “Aligned” or “Misaligned;” we simulated these cases and reproduced similar
results in S/ Appendix, but here focus on the key blocked vs. interleaved contrast.
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were interleaved, it performed poorly on test trials that required
compositional generalization. Thus, in contrast to the categoriza-
tion task where IWL showed good generalization performance
(Fig. 3F), the compositional task allowed us to reproduce known
failures in compositional generalization in networks capable only
of standard IWL (25, 53, 54, 81, 82).

ICL can be compositional and can produce a blocking advantage.
We then endowed the network with ICL abilities by first having it
metalearn on a distribution of blocked, rule-like tasks (analogous
to the developmental process prior to entering a psychology study;
see Materials and Methods for details). After metalearning, these
ICL abilities allowed the network to generalize compositionally
on unseen tasks, achieving near-perfect test accuracy on color—
animal combinations not included in the study examples. As in
the previous simulations, ICL exhibited the blocking advantage
observed in humans (24), performing better in the few-shot
setting when trials were blocked compared to interleaved (main
effect of curriculum on rule-like test accuracy: P < 1072). This
was again due to the fact that the model metalearned on blocked
curricula (87 Appendix).

These findings extend recent work (49) by showing that the

ICL algorithm that emerges in metalearning neural networks
can reproduce human-like compositional generalization behavior
and its associated blocking advantage in this experimental
paradigm (24). This is significant because it shows how neural
networks, which have traditionally been criticized for lacking
compositionality (25, 54), can through metalearning come to
implement an ICL algorithm that is capable of human-like
compositional generalization (31, 72).
Concurrent ICL and IWL produce compositionality and both
curriculum effects. Finally, we allowed the metalearning networks
to continue to train via IWL, and replicated the full set of human
curriculum effects that we reproduced above in the category-
learning setting. As predicted, ICL failed in our novel rotated
version of the task, leading to more errors and thus greater IWL
(Fig. 3G). This increase in IWL led to an interleaving advantage
on the rotated task (Fig. 3H)—a testable prediction not evaluated
in humans in the original study—whereas a blocking advantage
was reproduced for the original rule-like task due to ICL
(see Fig. 3G; interaction between rotation and curriculum on
accuracy: P < 1073). Taken together, our findings on the
compositional task are again consistent with our theoretical
framework (see principle 3), and show how the distinction
between in-context and in-weight learning can offer a unified
account of human compositional generalization capabilities and
their dependence on the learning curriculum (24).

LLMs Exhibit Compositionality and a Blocking Advantage. So
far, we have established that it is possible for an ICL algorithm
to exhibit compositionality and a blocking advantage, and that a
single neural network implementing this kind of ICL alongside
its usual IWL will reproduce the full set of empirical results that
we have been targeting. A separate question one can ask is why a
network would develop an ICL algorithm with these particular
properties in the first place. In our metalearning experiments, we
used task distributions that promote these properties (Materials
and Methods), but there may be more naturalistic distributions
that could give rise to them.

Although the datasets used for training LLMs are developmen-
tally unrealistic in many ways (83-85), they are more naturalistic
in the sense that they are largely made up of natural language
text, rather than content that is specifically relevant to our tasks.
These corpora are not purposefully designed to encourage ICL
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Fig. 4. LLMresults. Large language models (LLMs) are capable of in-context
learning (ICL) on the text-based version of the compositional task based
on the human study (24). Both GPT-3.5 (solid lines) and Llama 2 (dashed
lines) achieved good compositional generalization performance (i.e., test
accuracy) on the rule-like version of the task (blue), and also exhibited
a blocking advantage, performing better when trials were blocked than
interleaved (Fig. 3A). ICL test accuracy was much worse on the rotated task
(red), consistent with our theoretical framework.

or any of our hypothesized properties to emerge. Nevertheless,
impressive ICL abilities do arise in these models, giving them the
flexibility to accomplish many tasks in context (43, 61). Given
the scale and complexity of their training datasets, it is unclear a
priori what ICL properties LLMs should develop, but prior work
has shown that they can exhibit compositional generalization in
some settings (64-66), and can be sensitive to the order in which
in-context examples are provided (86, 87).

We thus hypothesized that the properties of ICL assumed by
our theoretical framework (i.e., compositionality and a blocking
advantage; see principle 3) may emerge in LLMs. We tested
this hypothesis by evaluating two LLMs, Llama 2 (88) and
GPT-3.5 (43, 89), on the same compositional task used above.
We evaluated the emergent ICL abilities of these models by
presenting color—animal pairs from the compositional task only
in context.

Both LLMs showed strong compositional generalization per-
formance on the task (Fig. 4), even though they were only given
the 9 study examples and had not been explicitly trained on
variants of the task. This shows that the emergent ICL abilities in
these models can produce the kinds of generalization behaviors
that standard IWL in neural networks struggles to achieve (see
test accuracy in Fig. 3F).

Notably, both LLMs also showed a blocking advantage in the
rule-like version of the task (main effect of curriculum on test
accuracy: P < 1073).% This again shows that although the ICL
capabilities in the LLMs was not specifically sculpted to produce
this blocking advantage, it emerges nonetheless via large-scale
next-word (next-token) prediction.

Finally, both LLMs performed poorly on the rotated task
(main effect of rotation on test accuracy: P < 1073). This is
also consistent with our theoretical framework (see principle 3),
which predicts that ICL should be more difficult in the absence
of rule-like structure because inferences are more complex. IWL
would be required to compensate for this failure, as we showed
in our metalearning experiments.’

Thus, neural networks can come to implement an ICL
algorithm with the properties of compositionality, a blocking
advantage, and a preference for rule-like structure—even when
their training does not specifically target these properties, but
consists in next-token prediction on naturalistic text.

*like our metalearned neural networks, the LLMs also showed the full pattern of
curriculum effects described in the human study; see S/ Appendix for details.

Sin principle, these models should also show IWL properties like any other neural network,
but it is expensive to finetune them, and our main questions here pertain to ICL.
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Fig. 5. Trade-off between flexibility and retention. Ablating attention to examples in the context (analogous to limiting the number of items accessible in WM)
hurts cognitive flexibility but improves retention. When attention is ablated (i.e., pq is high), few-shot generalization via ICL suffers (Left) and incremental learning
via IWL is slower (Middle Left). This results in more errors (Middle Right), consistent with human EEG data showing prolonged presence of neural signatures of
prediction errors under higher WM load (9). When more errors are made, more IWL occurs, resulting in better retention in the absence of contextual information
(Right), consistent with human results showing better retention after learning under higher WM load (21, 36). Results are from the compositional task. pq is the

probability that attention to each example in the context was inhibited.

Trade-Off Between Flexibility and Retention. So far, we have
highlighted the advantages of ICL over IWL in supporting rapid
few-shot learning and generalization, and only noted that IWL is
necessary in cases where ICL is less effective (e.g., when trials are
interleaved or in rotated tasks). However, an additional benefit of
IWL (and relatedly, episodic and semantic memory compared to
WM) is that retrieval of information stored in synaptic weights
does not require persistent activity (e.g., throughout a delay), and
can therefore operate over longer timescales and in the absence
of contextual cues (44, 74). Thus, we hypothesized that a natural
consequence of the coexistence of ICL and IWL would be the
emergence of a trade-off between flexibilizy, or rapid adaptation
to new tasks from only a few examples, and retention, or the
ability to recall information after longer delays or in the absence
of contextual information. The key insight here is that if learning
takes place in a setting where ICL is successful, generalization
based on latent rules may be improved, but fewer prediction
errors will update weights. When latent rules are identified, they
should give rise to reduced prediction errors, and this suppression
should in turn relate to better generalization but worse retention.

In fact, analogous findings have been reported in two
lines of research on reinforcement learning (RL) in humans
(9, 14, 21, 35, 36). When the task was structured with a hidden
rule that could be inferred from the context, neural reward
prediction errors were suppressed, and this suppression predicted
better generalization of that rule (14). In simpler RL tasks,
participants also show particularly rapid learning when they can
acquire contingencies using an ICL-like WM strategy, achieving
near-perfect performance within only a few presentations of each
stimulus (9). However, when WM load was increased, many
more presentations were required to achieve the same perfor-
mance, consistent with an I'WL-like incremental learning strategy
relying more on RL. Electroencephalogram (EEG) recordings
showed that neural signatures of reward prediction errors were
suppressed when WM load was low (9) or when the underlying
structure of the task had been inferred (14). Moreover, this neural
marker of an ICL-like WM strategy was predictive of both better
generalization (14) and reduced retention (21). To date, however,
no single model has accounted for both sets of findings.

We tested whether a similar trade-off between flexibility and
retention would emerge in our neural networks. As a proxy for
WM load, we ablated the networks’ ability to maintain contextual
information throughout learning by inhibiting attention to each
in-context example with probability p, (similar results were
obtained by adding noise; see SI Appendix). Retention was
evaluated by testing networks on examples they had seen during
training, but in the absence of any contextual information
(analogous to testing after a delay when relevant information
is not available in WM).

PNAS 2025 Vol. 122 No. 35 e2510270122

The results for the compositional task are shown in Fig. 5
(results for the category-learning task can be found in S7
Appendix). In both tasks, we observed a robust trade-off between
flexibility and retention. When the ablation was stronger (p, was
higher), few-shot generalization via ICL was worse (Fig. 5,
Left) and incremental learning via IWL took longer to reach
optimal performance (Middle Left). This meant that more errors
were made throughout learning (Middle Right), consistent with
the stronger neural signatures of prediction errors observed in
humans under higher WM load (9, 75). More errors resulted in
greater [IWL, leading the model to perform better on the retention
test (Right), consistent with the superior retention observed in
humans that had learned under higher WM load (21, 36).

Thus, the same principles that allow the networks to reproduce
compositional generalizations and curriculum effects can also
explain the trade-off observed in human RL experiments, recapit-
ulating both its neural and behavioral signatures (9, 21, 36). This
trade-off suggests that ICL and I'WL have distinct advantages
whose relative importance depends on whether flexibility or
retention is prioritized.

Discussion

Influential theories in cognitive science posit two distinct systems
to account for findings suggesting a duality in human learning
(1-10, 90). Prominent theories leverage distinctions between
controlled vs. automatic processing (6, 91, 92), model-based vs.
model-free reinforcement learning (3, 93, 94), WM in PFC vs.
striatal synaptic learning (9, 21, 34, 50), system 2 vs. system
1 thinking (40), and rule-based vs. procedural learning (1, 5).
These theories explain why human learning exhibits different
phenomena under different conditions. Here, we have focused
on three such phenomena: 1) compositionality 2) curriculum
effects, and 3) the trade-off between flexibility and retention.
Humans are capable of utilizing rule-like structure to generalize
compositionally (15, 24, 26-29), and of integrating over multiple
dimensions and making arbitrary associations when no rule-like
structure is present (1, 5, 60, 95). In the former case, learning
can be rapid and flexible, and tends to benefit when related trials
are blocked over time (5, 19, 24). In the latter case, it benefits
when trials are interleaved (5, 37-39), and can result in improved
retention but limited flexibility and generalization.

Our work shows how these phenomena can be explained
by a single neural network capable of two qualitatively distinct
learning processes. In particular, we have shown how metalearn-
ing can endow a network with a capacity to learn in context,
and how this capacity can capture compositionality and the
blocking advantage on tasks governed by rule-like structure.
This is analogous to how humans improve at learning new
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tasks and using WM to make sophisticated rule-based inferences
over the course of development (49, 96, 97). ICL operates
when tasks are consistent with readily identifiable rules but
can be unsuccessful on tasks lacking such structure, triggering
error-driven IWL and producing an interleaving advantage due
to catastrophic forgetting (59, 60). This dynamic interaction
between ICL and IWL naturally recapitulates the trade-off
between flexibility and retention observed in humans: WM can
be leveraged to rapidly learn new stimulus—response rules, but
causes reductions in neural prediction errors driving incremental
reinforcement learning, resulting in worse retention after longer
delays (9, 21, 36).

ICL has recently emerged as an important topic in ma-
chine learning (43, 98). Studies have investigated what data-
distributional properties (44, 74, 99) or architectures (100—
102) drive its emergence, as well as the learning algorithm it
implements (47, 103, 104), and the internal circuits underlying
it (77-79). Here, we link this recent work to longstanding issues
in cognitive science, showing how the dynamic interplay between
ICL and IWL can offer a unified perspective on phenomena
related to prominent dual-process theories.

Curriculum Effects. There has been some debate on whether
humans learn better when related content is blocked or inter-
leaved over time, with some studies finding a blocking advantage
(5, 19, 24, 33) and others finding an interleaving advantage
(5, 37-39). Multiple factors may distinguish these cases (e.g.,
between-category and within-category similarity; 105), but one
important variable may be the presence of rule-like structure:
Humans have been shown to exhibit a blocking advantage
when the task is governed by succinct rules, and an interleaving
advantage when the task does not afford such rules (5, 24).
These effects are explained by a dual-process account in which
a rule-based learning system operates by an explicit hypothesis-
testing strategy and a procedural learning system operates by
incrementally integrating information over time (1, 5). Our work
offers an integrative perspective on this dual-process account,
showing how a similar duality can emerge in neural networks
capable of both ICL and TWL.

In our framework, the interleaving advantage arises because
of catastrophic forgetting (59), which is a natural property
of IWL in neural networks due to their use of overlapping
distributed representations (60). Might this kind of forgetting
explain the interleaving advantage observed in humans? The brain
is thought to mitigate catastrophic forgetting through the use
of sparse, pattern-separated representations in the hippocampus
(60, 106). However, this effect is unlikely to be eliminated
completely, so a similar principle may still underlie the modest
interleaving advantage observed in humans (5). Future work
could directly investigate the extent to which the interleaving
advantage observed in the absence of rule-like structure is due to
this kind of forgetting.

The blocking advantage, on the other hand, does not emerge
by default in standard neural networks, but a number of studies
have explored the neural mechanisms that might underlie it. For
example, a neural network model of rule-based inference and
WM in the PFC showed that blocking related trials over time
can encourage abstract rule-like representations to emerge in the
network’s activations (18). More recent work (58) showed that
a PFC-like neural network augmented with a gating mechanism
and a bias for active maintenance produces a blocking advantage
on a task involving cognitive maps (107). Related work has shown
how a neural network equipped with a specialized Hebbian
gating mechanism (108) can reproduce a blocking advantage
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observed in humans on an analogous task (19). A similar
Hebbian mechanism was then used to explain the blocking
advantage observed in the compositional task studied here
(24). Another recent study showed how the blocking advantage
observed in humans on a next-state prediction task (33) was
reproduced by a neural network model that actively maintained
distinct contextual representations over time (109). Overall, these
studies emphasize how a blocking advantage can emerge when
inferences are made through forward activation dynamics (i.e.,
in context), such as those made over items maintained in WM
in PFC.

Our theoretical account of the blocking advantage is broadly
consistent with previous models but has some advantages. First,
we have shown how it can emerge in a model that also produces
the interleaving advantage on other tasks. Furthermore, while
our framework is consistent with previous models in suggesting
that the blocking advantage is related to activation dynamics
(e.g., WM in PFC; 18, 58), we show how these dynamics can be
metalearned (71), thus providing a conceptual link between these
prior models and ongoing work investigating metalearning and
cognitive flexibility in natural and Al (49, 64, 67, 69, 110, 111).

Indeed, we also observed a blocking advantage in LLMs, which
appear to exhibit high levels of cognitive flexibility (43, 61, 112).
These results show that a blocking advantage can emerge with
ICL even when networks are trained on natural text rather
than metalearning datasets specifically designed to promote it.
Although it is difficult to know exactly why this blocking
advantage emerges, we speculate that it is driven by distributional
properties of natural text, such as the tendency for human
writing to afford inferences best made by assimilating consecutive
examples in a sequential manner. Further work is needed to
better understand the mechanisms responsible for the blocking
advantage in LLMs.

In general, our work does not directly address whether the
human blocking advantage emerges due to strong constraints
imposed by neural architecture (e.g., recurrence, limited WM ca-
pacity), rather than the statistical properties of the environment.
Our metalearning networks and LLMs utilized the transformer
architecture (76), which is not recurrent and does not have hard
constraints in WM capacity. Both the blocking advantage and
the preference for rule-like tasks emerged in these models due to
the statistical properties of their training data. This was especially
clear in the metalearning experiments, where we had full control
over the data distribution and confirmed that it determines when
the blocking advantage emerges (87 Appendix). Consistent with
these findings, prior work has shown that metalearning networks
trained on category-learning problems that match the natural
statistics of real-world tasks perform poorly on the same problems
humans struggle with ref. 69. Furthermore, the human blocking
advantage has been shown to depend on the extent to which
feature dimensions relevant to the rule-like structure of the task
are represented in a strongly segregated manner (19), a factor
likely to depend on an individual’s prior learning experiences.
However, we think the human blocking advantage is also likely
to depend on key architectural features of the brain, such as its
recurrence and mechanisms for gating and serial attention in
PFC and basal ganglia (17, 18, 34, 58). These, in turn, might
affect the distributional properties of natural language produced
by humans and provided as training data for the LLMs (113).
Further work is required to fully resolve the extent to which
architectural features rather than distributional properties drive
the blocking advantage in humans. However, regardless of its
origins, our work shows that the simultaneous presence of ICL
and IWL can explain how a blocking advantage on rule-like tasks
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can coexist with an interleaving advantage on other tasks within
a single neural network.

Compositionality. Compositionality is thought to be a key prop-
erty underlying human cognitive flexibility, permitting familiar
rules or concepts to be combined in novel ways, thus facilitating
a powerful form of generalization (15, 25, 72, 114). Recent work
has shown that although compositionality may not be a natural
property of standard IWL (25, 53, 54, 82), it can emerge with ICL
(49,72, 115, 116). Our results build on this work, showing that it
is possible to endow a neural network with an ICL algorithm that
is capable of reproducing compositional generalization behaviors
observed in humans in a recent study (24), even when standard
IWL fails (see test accuracy in Fig. 3F). We showed that this
kind of ICL algorithm can be metalearned from a distribution of
related tasks, but also emerges in LLMs trained on large corpora
of text (Fig. 4). While metalearning offers a clear understanding
of how a neural network can come to implement an emergent
compositional learning algorithm (49, 72), it is less clear why
this would emerge in LLMs. One suggestion is that at large
enough scales, the language modeling objective used in LLMs can
itself be seen as engendering a kind of metalearning (43, 110),
where some subset of training samples puts pressure on these
models to learn how to compose novel concepts or reasoning
steps in context (72). This is consistent with the hypothesis
that human compositionality is metalearned—a conjecture that,
while difficult to study, may yield specific empirical predictions
(31, 49, 96, 97). Finally, a key contribution of our work is that it
builds on studies linking compositionality to curriculum effects
in humans (24), providing a unified account of compositional
generalization and its dependence on curriculum.

One Network or Two Systems for Category Learning? While our
neural networks are not meant to be comprehensive models of
human category learning (see e.g., ref. 117), they may be relevant
to other phenomena observed in category-learning studies. One
ongoing debate in this area has been about whether human
category learning is best characterized by a single learning system
or by multiple systems (1, 95, 118-125). Single-system theories
emphasize the principle of parsimony, and argue that a system
that relies on stimulus similarity and selective attention can
explain most of the available findings (120). Multiple-systems
theories argue that a single system is not sufficient to account for
double dissociations evident in human behavior (1, 126, 127),
such as the one pertaining to the curriculum effects discussed
above (5).

Our work may help resolve this debate by showing how
such double dissociations can be explained by a single network
that can learn in two different ways. ICL and IWL are not
separate learning systems, but nevertheless manifest fundamentally
different properties and compete to drive learning behavior, with
each taking precedence at different times. Our approach arguably
maintains the parsimony of a single-system theory in the sense
that these two distinct sets of learning properties emerge from
the natural dynamics of a single network, rather than being
independently posited as part of separate systems. However, as
discussed above, the properties of ICL and IWL align well with
the two systems proposed in prominent multiple-system theories
(1, 118), with ICL corresponding to the explicit, verbal system
and IWL corresponding to the implicit, procedural system.

In addition to the curriculum effects we observed in our
experiments, the distinction between ICL and IWL may help
to explain other findings motivating multiple-system theories of
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category learning. For example, some studies have shown that
increased WM load can impair rule-based learning (126, 128-
130, although see 122, 131). This finding parallels our results
showing that ICL-mediated generalization suffers when access
to contextual information is restricted (Fig. 5). There is also
some evidence that children struggle specifically with rule-based
category-learning tasks (132—135), but can perform at adult levels
when categories are based on family resemblances (136). This
is consistent with our neural networks, which are inherently
capable of IWL but only develop sophisticated ICL through
metalearning (31).

Our models may also clarify certain outstanding questions
for current multiple-system theories. For example, behavioral
evidence suggests that the verbal or explicit system operates by
default initially in humans, but it is unclear a priori why this
would be the case (1, 5). In our neural network models, ICL
operates by default because it can occur at a much faster timescale
(through activation dynamics), and because IWL only occurs
when errors are made. Another unresolved question concerns
evidence from neuroimaging studies on category learning sug-
gesting that there is substantial overlap in the brain regions active
during rule-based and information-integration tasks (137, 138).
This can seem to contradict the predictions of a multiple-system
theory that posits completely independent learning modules. The
distinction between ICL and IWL provides a natural explanation
for this finding, as these two learning processes coexist throughout
the network and therefore need not be localizable to separate
regions.

In fact, our neural networks are likely to be unrealistically
homogeneous, as they have no inherent modularity at all. Many
findings suggest that specific brain regions such as PFC are
particularly important for cognitive functions such as WM, rule-
based inference, and modulating processing according to the
current context or goal (18, 52, 139-141). We speculate that
the organization of the human PFC, which has an intrinsic bias
to robustly maintain information over longer timescales until it
is actively updated (17, 142, 143), may encourage ICL abilities,
along with their specific properties, to become partially localized
to this area (58, 144).

Although our models did not contain any separate PFC-
like system, we note that the ICL algorithms implemented in
their activation dynamics can be seen as analogous to those
observed in neural models of PFC trained on multiple tasks
(13, 18, 71). Just as in our models, these ICL-like abilities only
emerge through TWL-like learning of abstract representations
in PFC and gating policies in the basal ganglia. Recent work
has shown that transformers can mimic the frontostriatal gating
mechanisms in these biological models when trained on human
WM tasks, and exhibit effective capacity limitations despite the
lack of any inherent architectural constraint imposing such a
limitation (145, 146). While we did not directly investigate the
fine-grained computations carried out in ICL in our models, the
results of the ablation experiments (Fig. 5) illustrate how ICL
relates to attentional access to contextual information. Future
work could more thoroughly investigate whether emergent PFC-
like computational mechanisms also explain the ICL-related
phenomena in our metalearning networks.

Materials and Methods

Model Details. All metalearning experiments used the transformerarchitecture
(76, 88). An informal hyperparameter search was conducted over number of
layers, hidden size, dropout, and leaming rate. The size of the feedforward
layers was always twice the hidden size. The best model was selected based on
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validation accuracy. In the category task, the best model had 4 layers, 8 heads,
a hidden size of 64, and no dropout. In the compositional task, the best model
had 12 layers, 8 heads, a hidden size of 64, and dropout of 0.1. Models were
evaluated on exact-match accuracy.

Inthe LLM experiments, we evaluated GPT-3.5(43, 89)and Llama 2 (88). GPT-
3.5isan LLM trained on next-token prediction and finetuned to be more useful
ina chat-based interface. Llama 2 had not been finetuned on instruction data. In
GPT-3.5("gpt-3.5-turbo-instruct”), temperature was setto 0.1 and five runs were
performed. A maximum of 7 tokens were generated, and no postprocessing
was done except to strip extra spaces. Llama 2 is an open-source model with
approximately 70 billion parameters. The model was run using resources from
the Center for Computation and Visualization at Brown University. Different
prompts were tested, but good performance was achieved with simple prompts
containing only the study examples; prompts did not qualitatively change the
pattern of results across conditions.

Metalearning. For the category-learning experiments, networks metalearned
on a distribution of tasks with the same basic structure described above. Each
individual task was sampled as follows: 2 feature dimensions were sampled
uniformly without replacement from a set of 200 unique dimensions. Each of
these dimensions had 8 possible values, making 64 possible items in the newly
sampled task. One of two possible category labels was randomly assigned to
each of the two categories. In each new task, 16 items from each category
were included in the set of 32 study examples. The queries seen during
metalearning could either be one of the 32 given in the context (“train”), or
one of the remaining 32 ("test"). All samples in the metalearning distribution
used the rule-like task and the blocked curriculum. The network metalearned
on 12,000 tasks and was tested on a held-out set of 100 tasks that had not
been seen during training. A further 10 held-out tasks were used for testing.
In the category setting, networks metalearned for 20 epochs with cross-entropy
loss, the Adam optimizer (147), a learning rate of 0.0001, and a batch size
of 256.

The tasks used for metalearning on the compositional task (24) were sampled
as follows: The orders of the lists of five colors and five animals were shuffled.
Then, the two features were randomly assigned to the x- and the y-coordinates
(color = x and animal =y, or vice versa). In the rotated condition, this 5
x 5 grid was rotated by 45° and scaled so that each coordinate landed
on an integer. All samples in the metalearning distribution were rule-like
and blocked. We again generated 12,000 tasks for metalearning, and used
100 held-out tasks for validation. A further 10 held-out tasks were used for
testing. During metalearning in the compositional task, networks trained for
500 epochs with the Adam optimizer (147), alearning rate of 0.001, and a batch
size of 256.
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Task-Specific Training. Once the network acquired an ICL algorithm through
metalearning, it was subsequently evaluated on its ability to learn new unseen
tasks from each condition. This evaluation was conducted in two ways. In the
few-shot evaluation, the weights of the network were frozen, ensuring that
all learning was due to ICL on the study examples given in context. In task-
specific training, the model's weights were not frozen, and any errors made
were used to update weights. During task-specific training, the model leared a
single task and only received feedback on the study examples, thus emulating
the experience of the human participants (24). Note that this is unlike the
metalearning phase, when the model learned how to generalize to queries not
included in the study examples. This second task-specific learning phase that
the model underwent can be understood as “finetuning” the model on a specific
task, while the metalearning can be understood as "pretraining.” During task-
specific training, networks were again trained with cross-entropy loss and the
Adam optimizer (147), with a learning rate of 0.00001 in the category-leaming
task, and a learning rate of 0.00071 in the compositional task. In both tasks, the
batch size was equal to the total number of examples (i.e., queries) used in a
given block (32 in the category-leaming setting, 5 in the compositional setting).

During the task-specific training phase, samples were either blocked or
interleaved in two distinct but congruent ways. In the blocked condition, related
itemswere blocked overthe context, butthey werealso blocked overthe gradient
steps (i.e., the model was trained for N gradient steps on samples containing
queries from one stimulus group, then was trained for N gradient steps on
samples containing queries from the other group, and so on). Likewise, in the
interleaving condition, items from each group were interleaved both over the
context and over the gradient steps. In the main experiments, the curriculum
condition was always consistent during task-specific training-related items were
either blocked over both the context and the gradients steps, or interleaved over
both the context and the gradient steps. However, for the sake of completeness
we experimented with all combinations and report these results in S/ Appendix.

Data, Materials, and Software Availability. Code data have been de-
posited in GitHub: jlrussin/icl-iwl-interplay (https:/github.com/jlrussin/icl-iwl-
interplay) (148).
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