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Striatal dopamine can enhance both fast
working memory, and slow reinforcement
learning, while reducing implicit effort cost
sensitivity

Andrew Westbrook 1 , Ruben van den Bosch2,3, Lieke Hofmans4,9,
Danae Papadopetraki2,3, Jessica I. Määttä 5, Anne G. E. Collins 6,
Michael J. Frank 7,8,10 & Roshan Cools 2,3,10

Associations can be learned incrementally, via reinforcement learning (RL), or
stored instantly in workingmemory (WM).WhileWM is fast, it is also capacity-
limited and effortful. Striatal dopamine may promote WM, by facilitating
WMupdating and effort exertion and also RL, by boosting plasticity. Yet, prior
studies have failed to distinguish between the effects of dopamine manipula-
tions on RL versus WM. N = 100 participants completed a paradigm isolating
these systems in a double-blind study measuring dopamine synthesis with
[18F]-FDOPA PET imaging and manipulating dopamine with methylphenidate
and sulpiride.Wefind that learning is enhanced among high synthesis capacity
individuals and by methylphenidate, but impaired by sulpiride. Methylpheni-
date also blunts implicit effort cost learning. Computational modeling reveals
that individuals with higher dopamine synthesis capacity rely more on WM,
while methylphenidate boosts their RL rates. The D2 receptor antagonist sul-
piride reduces accuracy due to diminished WM involvement and faster WM
decay. We conclude that dopamine enhances both slow RL, and fast WM, by
promoting plasticity and reducing implicit effort sensitivity. This work was
completed as part of a registered trial with the Overview of Medical Research
in the Netherlands (NL-OMON43196).

Striatal dopamine signaling has been implicated in cortico-striatal
plasticity1–3 and reinforcement learning (RL) across species2,4. Yet, in
humans, a substantial contribution to learning ismediated by working
memory (WM) processes5–12, and prior work linking individual

differences in dopamine function to RL typically fails to disentangle
the impact on incremental RL versus WM.

WhileWM is faster andmore flexible, multiple constraints limit its
contributions. Unlike RL, WM is capacity-limited and subject to
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decay13–15. WMmay thus play a smaller role when there are more items
to remember, andwhen theywere encountered farther in the past.WM
is also effort-costly, and people may forgo WM-based strategies to
avoid the effort16–19.

Importantly, theoretical models and empirical data implicate
striatal dopamine signaling in both RL, by alterating synaptic plasticity,
andWM via formation and expression of cortico-striatal synapses that
encode gating policies20–23. Furthermore, striatal dopamine can also
make WM less effort-costly24–28. While WM is effortful, striatal dopa-
mine signaling promotes willingness to exert effort by making people
more sensitive to potential benefits, and less sensitive to effort costs24.
If striatal dopamine signaling promotes reliance on WM—either by
shaping corticostriatal synapses to facilitate gating, or by making WM
less effortful—this can amplify effective learning rates, confounding
inferences about the direct effects of striatal dopamine signal-
ing on RL.

Here, we use a paradigm designed to distinguish between con-
tributions of WM and RL to stimulus-response learning. The reinfor-
cement learning working memory (RLWM) task10 manipulates the
degree to which people can rely on WM. Set sizes vary (between two
and five items) across blocks of trials, thus taxing WM load, delay, and
interference to varying degrees. While healthy adults can rely mostly
on WM (rather than RL) when there are only two items to encode
in recent experience, participants must rely increasingly on RL as set
sizes grow to exceed WM capacity7,9,10,29. We furthermore include a
surprise test phase, after learning, to probe the durability of RL-
informed learning in terms of participants’ ability to recall features of
the stimuli after a long delay.

To study dopamine’s effects on RL and WM, we employ a com-
bination of methods. We isolate the effects of dopamine signaling in
the striatum by measuring individual differences in the rate at which
dopamine is synthesized in presynaptic striatal terminals using [18F]-
FDOPA PET imaging. We also manipulate dopamine signaling, while
participants perform the RLWM task in separate sessions, by admin-
istering a placebo, methylphenidate—a dopamine (and noradrenaline)
reuptake blocker commonly used to treat attention deficit hyper-
activity disorder, or sulpiride—a D2 receptor antagonist commonly
used to treat psychosis in schizophrenia.

To anticipate our results, we find that striatal dopamine is related
to enhanced performance on the RLWM task. Behavioral analyses and

computational modeling reveal that higher dopamine synthesis
capacity promotes faster learning by increasing reliance on WM. Sul-
piride undermines performance specifically because it increases
interference within WM when there is an increasing number of items
between successive encounters of the same stimulus. Furthermore, we
find that methylphenidate boosts the rate of RL, controlling for WM
contributions to the learning process. Finally, we find that while WM is
effort-costly, methylphenidate can blunt implicit effort cost learning
associated with more demanding tasks.

Results
In each of three drug sessions—placebo, methylphenidate, and
sulpiride—participants completed the RLWM task, which was
designed to dissociate RL and WM processes during stimulus-
response learning10. On a given trial, participants learn to associate
pictures with one of three buttons by trial-and-error (Fig. 1). Parti-
cipants are given feedback about the accuracy of each response (Rj).
To distinguish contributions of RL versusWM, stimuli are presented
in blocks of varying set size. By this design, WM can dominate when
there are only two items to remember, typically separated by
minimal delays (e.g., one or two trials). Conversely, RL necessarily
plays a larger role for larger sets sized blocks (up to five items in a
block) as the number of items and delays (defined here as the
number of trials since the last correct response for a given stimulus)
grow to exceed WM capacity.

Both reinforcement learning and working memory contribute
to performance
Conjoint contributions of WM and RL are implied by the shape of
learning curves by stimulus iteration (Fig. 2). Curves are steeper when
set size is smaller and people could, in principle, relymore onWM. In a
logistic regression of accuracy on set size and previous iteration count
(the number of times a stimulus has been encountered), accuracy is
higher with more iterations of each stimulus (β = 1.90; p < 2.0 × 10−16)
and for smaller set sizes (β = −0.30; p < 3.6 × 10−10). An interaction
between these factors implies that effective learning rates are larger in
smaller set size blocks (β = −0.11; p =0.0016). Prior computational and
neurophysiological evidence7,9,10,29,30 supports the hypothesis that
steeper learning curves for smaller set sizes reflect greater reliance on
WM rather than faster RL.

R1 R2 R3

A

B Test Phase: Which of each pair received higher rewards?

… …

Training Phase: Which button goes with each picture?

Block 1: 
ns = 3

R2 R3 R3

Correct 
Choice

Block 2: 
ns = 5

R1 R3 R2 R1 R1

Correct 
Choice

Correct
+2

Block 1 Example

R2

Try Again!
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Delay = 2

Fig. 1 | RLWM task schematic. A Training Phase: in each block participants are
shown sets of images with set size (ns) varying by block (between ns = 2 and ns = 5).
Participants learn through trial and error which of three buttons to press in
response (Rj) to each stimulus. If they respond correctly, they are rewarded points

(+2 or +1, amounts determined probabilistically, see “Methods” for full details) and
if they are incorrect, they receive no points. B Test phase: participants are shown
pairs of stimuli selected from across all training phase blocks and instructed to
select the item in each pair for which they recall receiving the most rewards.
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It has further been demonstrated in both behavior and neural
activity that people rely more on WM for novel items when fast and
flexible updating offers the best performance benefits, and they rely
more on RL for familiar items when slow but robust RL-cached values
have had the chance to form9,10,29,30. An analysis of performance early
versus late in a block supports this distinction, with WM appearing to
contribute more to performance early, while RL contributes more late
in a block. Two hallmarks of WM reliance—sensitivity to set size
(Fig. 3A) and delay (Fig. 3B)—are apparent early in a block (fewer than
three previous correct iterations for each stimulus) and are minimal
late in a block (the last two iterations for each stimulus) across all three
drug sessions (Fig. 3). Two-way ANOVAs reveal that participants’
average performance across all three sessions varies as a function of
set size (F(1732) = 127, p < 2.0 × 10−16), early versus late in a block
(F(1732) = 7.28 × 103, p < 2.0 × 10−16) and their interaction (F(1732) = 104,
p < 2.0 × 10−16), and also effects of delay (F(1,2388) = 596,
p < 2.0 × 10−16), early versus late (F(1,2388) = 102, p < 2.0 × 10−16), and
their interaction (F(1,2388) = 30.5, p = 3.6 × 10−8). Thus, these data
support the hypothesis that when people encounter novel items, they
rely heavily onWM, and thus also show limitations due to capacity and
interferencewithinWM, but they shift to RL as the number of previous
correct iterations grows and RL-based information becomes more
reliable. This inference is also consistent with evidence that although
people perform better for smaller set sizes early in a block, neural
indices of RL grow across a block and do so faster in higher set-sized
blocks, when participants rely more on RL versus WM30.

Striatal dopamine variously enhances performance
Striatal dopamine signaling improves performance in multiple ways.
We employed complementary tools to dissect these effects. First, we
measured individual differences in dopamine synthesis capacity using
[18F]-FDOPA PET imaging. Dopamine synthesis capacity is correlated
across five striatal sub-regions (ICC =0.75; p = 3.1 × 10−4), yet we
focused our analysis on the dorsal caudate nucleus, where dopamine
signaling has previously been implicated in RL about higher
cognition31–34, WM gating20,23,26,35, and cost-benefit decision-making
about cognitive effort24,36–38. We also had participants complete the
task in three drug sessions, after takingmethylphenidate—a dopamine
and noradrenaline transporter blocker which should amplify striatal

dopamine signaling, and sulpiride—a selective D2 receptor antagonist,
or placebo.

To evaluate the effect of dopamine on performance, we fit a
hierarchical Bayesian model regressing trial-wise accuracy on drug,
individual differences in dopamine synthesis capacity, and session
number. In our model we also simultaneously estimate the effects of
set size, the number ofprevious correct iterations (the number of prior
trials onwhich a correct responsewasgiven for each stimulus), and the
delay (number of trials) since the last correct iteration, along with
higher order interactions with drug status and dopamine synthesis
capacity (see Supplementary Table S1 for the full results). The fitted
model reveals that striatal dopamine signaling clearly enhances per-
formance. Specifically, higher dopamine synthesis capacity (β = .17;
p = .026) and methylphenidate versus placebo (β =0.41; p = 1.6 × 10−6)
both increase accuracy, while sulpiride decreases accuracy (β = −0.27;
p = 1.7 × 10−4; Fig. 3).

To understand why striatal dopamine synthesis capacity and
methylphenidate boosted performance and sulpiride undermined it,
we fit an RL model to behavior (adapted from refs. 10,12), examining
how people learn to select the correct action for each stimulus in each
block. The algorithm combines a WM component featuring instanta-
neous learning, capacity limits, and susceptibility to decay, and a
capacity-unlimited RL component with incremental learning rates (see
Methods for full details).

Fitted model parameters imply two ways in which striatal dopa-
mine signaling boosts performance. First, it boosts performance by
increasing the likelihood that people rely on WM (ρ; Fig. 4A, B), which
facilitates fast and flexible acquisition of new associations. Second,
striatal dopamine signaling also appears to increase the learning rate in
the RL system (αRL; Fig. 4C), which describes the rate at which incre-
mentally acquired stimulus-response associations can contribute to
action selection.

A hierarchical regression of the parameter ρ (WM reliance) on
dorsal caudate dopamine synthesis capacity and drug, controlling for
session number, reveals a positive effect of dopamine synthesis
capacity on placebo (β = 0.23; p =0.029; Fig. 4A), no effect of
methylphenidate vs placebo (β = 0.083; p = 0.48), and a negative effect
of sulpiride vs placebo (β = −0.35; p =0.0028; Fig. 4B; Supplementary
Table S3) on WM reliance. We note that we separately regressed
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Fig. 2 | Learning phase performance varies by dopamine synthesis capacity and
set size. Accuracy as a function of set size, individual differences (median split,
n = 46 in each group) in dopamine synthesis capacity in the dorsal caudate nucleus
(dCaudate DA), and A the number of previous iterations for each stimulus or B the

number of previous correct iterations for each stimulus. Accuracy increases with
more iterations of each stimulus on all drugs, and it is higher for those with higher
dopamine synthesis capacity. Error bars indicate ± SEM.
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multiplemodel parameters onto dopamine factors and this dopamine
synthesis capacity effect does not survive when we correct for these
multiple comparisons (pBonferroni = 0.087; Supplementary
Tables S3–S5). Nevertheless, a two-wayANOVA, correcting formultiple
comparisons, confirms a main effect of dopamine synthesis capacity
(F(1251) = 8.94, pBonferroni = 0.0093) across sessions and a main effect
of drug across participants (F(2251) = 4.44, pBonferroni = 0.039), but no
dopamine synthesis capacity by drug interaction (F(2251) = 2.06,
pBonferroni = 0.39). Collectively, these results support the hypotheses
that peoplewho can synthesize dopamine at a higher rate relymoreon
WM in general and that sulpiride reduced WM reliance.

The hypothesis that participants with higher dopamine synthesis
capacity rely more on WM is further supported by evidence that they
tend to perform better early in a block when items are novel and WM
affords better performance (Fig. 3A, B). A hierarchical logistic regres-
sion, restricted to early trials, regressing accuracyon set size, drug, and
dopamine synthesis capacity, reveals that participants with higher
dopamine synthesis capacity perform better when WM plays a bigger
role (β =0.14; p = 0.019; Supplementary Table S6). Although the same
effect is not significant in late trials (β =0.12; p =0.18; Supplementary
Table S6), the data do not support a distinction between early and late
trials. The two-way interaction between dopamine synthesis capacity
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Fig. 3 | Accuracy as a function of set size, delay, drug, and dopamine synthesis
capacity. Accuracy varies by dopamine synthesis capacity in the dorsal caudate
nucleus (dCaudate DA) across all three drug sessions: methylphenidate (MPH;
n = 45 and 46 for high and low dCaudate DA, respectively—referred to as “HighDA”
and “LowDA” in the figure), placebo (PBO;n = 46 and 45), and sulpiride (SUL; n = 46
and 46), early (the first two iterations of all stimuli; n = 46 and 46) versus late (the
last two iterations;n = 46 and 46) in each block. The effects ofA set size andBdelay
are evident early, but not late in each block. C Means and standard errors reflect
that methylphenidate significantly increases, and sulpiride decreases accuracy

relative to placebo, both early and late in a block (albeit the increase in early
performance on methylphenidate is non-significant). Further analyses reveal that
methylphenidate boosts performance in late versus early trials to a greater extent
than placebo in separate mixed effect logistic regressions of accuracy, early versus
late in a block. *,** indicate p <0.05 and p <0.01; main effects of the early model,
reveal that the effect of sulpiride versus placebo is significant (in two-sided z-tests
at p =0.026) and the effect of methylphenidate versus placebo is not (p =0.20). In
the late trials, both effects are significant (p =0.0078 and p =0.0039, respectively).
Error bars indicate ± SEM.

Article https://doi.org/10.1038/s41467-025-61099-0

Nature Communications |         (2025) 16:6320 4

www.nature.com/naturecommunications


and early versus late trials is not significant (β = −0.0099; p =0.89;
Supplementary Table S8).

There is also evidence linking dopamine synthesis capacity toWM
reliance in the full logistic regression (including all trials and task
variables; Supplementary Table S1). Namely, participants with higher
dopamine synthesis capacity have a larger effect of set size on accu-
racy (β = −0.10; p =0.029). Additionally, a two-way interaction indi-
cating stronger delay effects in larger set sized blocks (β = −0.28;
p = 2.8 × 10−14) is also larger for participants with a higher dopamine
synthesis capacity (β = −0.08; p = 0.016). Thus, model-independent
analyses converge on the hypothesis that people who can synthesize
dopamine at a higher rate rely more on WM, thus boosting their per-
formance on early trials, and alsomaking themmore susceptible to set
size and delay effects on trial-wise accuracy.

Evenwhen controlling for the effect of striatal dopamine signaling
onWM, however, there is evidence that dopamine boosts incremental
RL learning rates, as noted above (Fig. 4C). A hierarchical regression of
the learning rate parameter αRL on dopamine, controlling for session
number, reveals a two-way interaction such that methylphenidate
boosts learning rates for those with higher dopamine synthesis capa-
city (β = 0.30; p = 0.032; albeit this effect does not survive correction
for multiple comparisons across model parameters pBonferroni = 0.096;
Supplementary Tables S3–S5). There were no main effects of dopa-
mine synthesis capacity (β = −0.027; p =0.79), methylphenidate
(β =0.15; p =0.29), or sulpiride (β = −0.10; p =0.46). However, the
interaction reflected a positive correlation between dopamine synth-
esis capacity and αRL during the methylphenidate session (r =0.23;
p =0.042) thatwas absent in the placebo session (r = −0.020; p =0.86).
These results support the hypothesis that by blocking dopamine
reuptake and amplifying post-synaptic signaling, methylphenidate
increases the rate of RL, especially for thosewho synthesize dopamine
at a higher rate.

The inference that methylphenidate boosts learning rates is also
supportedbymodel-independent analyses. Specifically, the full logistic
regression of accuracy on dopamine and task variables (Supplemen-
tary Table S1) reveals that methylphenidate increases accuracy
(β =0.41; p = 1.6 × 10−6) and amplifies the effect of previous correct
iterations (two-way interaction: β =0.20; p = 3.7 × 10−3; Fig. 5)—a basic
index of RL processes9,30,39. Although dopamine synthesis capacity also
increases accuracy overall (noted above), it does not, in contrast with
methylphenidate, interact with previous correct iterations (β = −0.01;
p =0.84). Thus, on methylphenidate, people perform better in part
because their incremental improvement with each rewarded trial is
greater. Consequently, the overall improvement in accuracy between
early and late trials is larger on methylphenidate versus placebo. A
mixed-effects logistic regression of accuracy restricted to just early and
late trials indeed reveals that the improvement between early and late
trials is larger on methylphenidate versus placebo (two-way interac-
tion: β =0.29; p =0.030; Supplementary Table S8). These results con-
verge on the hypothesis that methylphenidate accelerates RL, leading
to faster incremental acquisition of stimulus-response contingencies
and a bigger overall improvement fromearly to late trials in eachblock.

Fig. 4 | Model parameters vary by dopamine synthesis capacity and drug.
A, B WM weighting (ρ) and C the RL learning rate (αRL) parameters from reinfor-
cement learning algorithm as a function of individual differences in the dopamine
synthesis capacity in the dorsal caudate nucleus of the striatum (dCaudate) across
three drug sessions: MPHmethylphenidate, PBO placebo, and SUL sulpiride. Drug
effects and Pearson’s correlation values are reported along with their significance

level: *,** indicate p < .05 and p < .01. For B two-sided, paired t-tests reveal sig-
nificant differences between WM weighting on PBO versus SUL (t(74) = 2.68,
pBonferroni =0.018) and MPH versus SUL (t(74) = 2.87, pBonferroni =0.016), but not
MPHversus PBO (t(74) = 0.89, p =0.38). Colored lines are a linearfit to the data and
gray bands indicate 95% CI.

Fig. 5 | Accuracy as a function of previous correct iterations for each stimulus
and drug. The effect of previous correct iteration is larger on methylphenidate
(MPH) versus placebo (PBO), and no different on sulpiride (SUL). The effect ofMPH
is significant: ** indicates p <0.01 (in two-sided z-test at p =0.0042). Error bars
indicate ± SEM (n = 91 in each session).
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Sulpiride, in contrast, undermines performance. According to
mixed-effects logistic regressions of accuracy, restricted to either early
or late trials, this is true both early (β = −0.20; p =0.024; Supplemen-
taryTable S6) and late in a block (β = −0.35;p =0.0072; Supplementary
Table S7). One reason that people performed worse on sulpiride
appears to be that they rely less on WM, in general. Indeed, fitted
parameters from the RL algorithm reveal that sulpiride had a negative
main effect on the WM reliance term ρ (β = −0.35; p = 0.0028; Sup-
plementary Table S3), as noted above.

There is evidence that people relied less on WM overall, after
taking sulpiride, because WM itself was less reliable. In the full logistic
regression of accuracy on dopamine and task variables (Supplemen-
tary Table S1), the negative effect of sulpiride on accuracy, was
accompanied by a two-way interaction, indicating that delay effects
were stronger on sulpiride versus placebo (β = −0.11; p = 0.047). Thus,
participants tend to perform worse when there is a bigger delay since
the last previous correct iteration for a given stimulus, to a greater
extent on sulpiride versus placebo. Thus, sulpiride may have reduced
performance, in part, because it amplifies delay effects, undermining
the contributions of WM to the learning process.

In sum, parameters from our RL model converge with our model-
independent analyses on the interpretation that greater striatal
dopamine signaling among thosewho synthesize dopamine at a higher
rate predicts greater reliance on WM. Conversely, on sulpiride, per-
formance decreases and this appears to reflect less reliance on WM
across participants. Our results furthermore indicate that methylphe-
nidate increases the rate of RL, especially among thosewho synthesize
dopamine at a higher rate, even after controlling for the drug’s
effects on WM.

Methylphenidate blunts implicit effort cost sensitivity
Following stimulus-response learning, participants were presented
with a surprise test phase inwhich they are asked to selectwhichof two
stimuli received greater rewards (Fig. 1). Stimuli were selected pseudo-
randomly from those previously encountered across all training phase
blocks. The intent of this test phase was to study RL-based value

representations—which should be robust to the decay across blocks—
after learning. Following prior work7,30,39, we examine whether the
reward statistics people learn through RL are influenced by the degree
to which people discount rewards by the cognitive effort they exerted
when rewards were received.

To evaluate the effects of task anddopamine variables onRL-based
value representations, we fit a hierarchical Bayesian logistic regression
of pairwise accuracy (correctly identifying the stimulus that received
higher rewards) on task variables, drug, and dopamine synthesis capa-
city (see Supplementary Table S2 for full results). Replicating prior
work39 we find that participants faithfully track reward statistics, cor-
rectly picking the stimulus which was rewarded at a higher rate (inter-
cept: β =0.08; p=0.0090), and increasingly so as the difference in
actual rewards increased (β =0.31; p =4.2 × 10−15; Fig. 6A).

Also replicating prior work39, we find that cached reward values
are perceived as less rewarding when they came from larger set-size
blocks—an effect previously interpreted as reflecting implicit sensi-
tivity to effort costs. Specifically, controlling for the rewards people
received for each stimulus during the learning phase, participants
assign a lower reward value to stimuli that had been encountered in
larger set-size blocks. This effect is captured by a negative effect of the
difference in set sizes between the stimulus which objectively received
more rewards and the stimulus that received fewer rewards (β = −0.28;
p = 7.1 × 10−8; Fig. 6B: collapsed across differences in actual reward
rates). That is, while participants track the rewards associated with
each stimulus, they treat rewards received in the context of higher set
sizes, and thus higher WM demands, as subjectively less rewarding. It
also converges with our own prior work in which we find that partici-
pants treat higher WM demands as effort costly, requiring greater
reward offers to offset these costs18,24.

Importantly, we also find evidence that striatal dopamine blunts
this implicit effort discounting effect. Specifically, the effect of set size
on perceived rewards was significantly less onmethylphenidate versus
placebo (β =0.12; p = 0.025; Fig. 6B). This effect of set size on per-
ceived rewards was not influenced by dopamine synthesis capacity
(β = −0.01; p = 0.85). This effect also does not reflect differences in the

Fig. 6 | Test phase performance depends on actual rewards received and drug.
Performance (selection of the option rewarded at a higher rate) as a functionof the
differences in (A) actual reward statistics (ΔV ) and (B, C) the set size of the block
from which the stimulus was drawn. A Participants successfully identify the more
highly rewardedoutcome higher than chance, and increasingly so as the difference

in actual reward rates increases. B, C Participants are less likely to indicate an
option was more highly rewarded if it came from a larger set-sized block. Relative
to placebo (PBO), this set size difference effect is smaller on methylphenidate
(MPH) and no different on sulpiride (SUL). Error bars indicate ± SEM (PBO: n = 78,
MPH: n = 69, SUL: n = 80).
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ability of participants to track reward statistics between drug sessions.
Indeed, test phase accuracy (the rate at which participants correctly
identify the more rewarded stimulus) is no different on methylpheni-
date versus placebo, and there is also no drug by reward rate differ-
ence interaction (both p’s > 0.57; Supplementary Fig. S6). In a different
experiment conducted within the current study, we find that striatal
dopamine signaling increases sensitivity to reward benefits and
decreases sensitivity to effort costs during decision-making about
cognitive effort24. This result converges with the present finding that
dopamine signaling can blunt implicit effort sensitivity during reward
learning. Thus, by amplifying striatal dopamine signaling, methylphe-
nidate not only increases sensitivity to benefits versus costs during
action selection24, but may also alter how people learn about effort
costs and benefits in the first place.

Discussion
Striatal dopamine promotes corticostriatal plasticity and thereby
facilitates RL1–4. Numerous studies have attempted to link stronger
dopamine signaling capacity to faster RL. However, this exercise is
complicated by the fact that striatal dopamine may also govern the
degree to which people rely on fast and flexibleWM to accomplish the
same tasks10. Potential effects on both RL and WM implies that it is
essential to control for either factor to determine the extent to which
dopamine affects the other. This is true whether the goal is to evaluate
the true rate of RL, or the degree to whichWM contributes to learning
beyond RL processes.

In this study, we employ a task that dissociates the relative con-
tributions of RL and WM systems to learning and examine how dopa-
mine influences each. We find that striatal dopamine signaling—
modulated by either dopamine synthesis capacity or dopamine drugs
—can promote learning, with distinct effects on both RL and WM.
Specifically, higher dopamine synthesis capacity in the dorsal caudate
nucleus predicts greater reliance on WM, while antagonism of dopa-
mine receptors with sulpiride reduces performance by reducing reli-
ance on WM. By blocking dopamine reuptake and thereby amplifying
dopamine signaling, methylphenidate also boosts performance in
interactions with striatal dopamine synthesis capacity. Specifically,
methylphenidate increases RL learning rates for people who synthe-
size dopamine at a higher rate. Importantly, we find that dopamine
promotes both WM and RL processes when controlling for the effects
of dopamine on the other. Thus, we infer that striatal dopamine sig-
naling enhances learning, both fast (via increased reliance on fast and
flexible WM) and slow (by boosting relatively slow, but practically
unlimited capacity RL).

We speculate that reliance on WM correlates with striatal dopa-
mine synthesis capacity because the latter may shape a trait policy to
rely on WM in general, in novel contexts. This could help explain why
dopamine synthesis capacity may correlate with individual differences
in WM capacity26,40. Correlations betweenWM capacity and dopamine
synthesis capacity may be obtained if study and task designs are sen-
sitive to individual differences in the degree to which people rely on
WM (although they will not always obtain41). But why does dopamine
synthesis capacity promote reliance onWM?One idea is related to the
emerging hypothesis that WM is effort-costly and stronger striatal
dopamine signaling helps overcome those effort costs24,27,38,42–52. In a
prior study, we showed that people aremorewilling to accept offers to
perform more demanding WM tasks for money if they have higher
dopamine synthesis capacity and on methylphenidate versus
placebo24. Our interpretation was that striatal dopamine signaling
influences both the learning and expression of cost-benefit policies
governing WM allocation—making people more sensitive to perfor-
mance benefits and less sensitive to effort costs.

The present findings constitute an important complement to that
conclusion. Namely, while the prior study primarily examined pro-
spective decisions aboutWM tasks, after effort costs had already been

learned, the present study reveals that dopamine may shape value
learning about effort costs themselves. Specifically,wefind that people
treat rewards earned in the context of higher WM demands as sub-
jectively less rewarding—an effect which we interpret as implicit dis-
counting of rewards by increasing cognitive effort costs. Critically, we
find that methylphenidate blunts this implicit effort-discounting
effect. Thus, stronger striatal dopamine signaling may make people
bothmorewilling to exert effort for tasks they have experienced in the
past and experience the tasks as less costly when they learn about
them in the first place (cf. 50). An important caveat is that, unlike prior
work showing that methylphenidate can alter explicit cost-benefit
decision-making, our measure of effort costs is implicit and the infer-
ence that dopaminemodulates cost learning during task performance
is indirect. Taken together with our prior study, our present results
support the hypotheses that striatal dopamine signaling canmakeWM
tasks less effort costly, both as people learn about the costs of per-
forming the task, and at the moment of choice, when they decide
whether to expend effort in the future. We note that these effects of
dopamine on prospective decision-making and effort cost learning
may complement the proposed role of norepinephrine in energizing
on-going effort expenditure53.

Many forms of psychopathology have been associated with
aberrant rates of RL. However, our results confirm prior work (e.g.8–10)
showing that it is crucial to control for the degree to which WM con-
tributes to the learning process when trying to estimate learning rates
for an RL system.Without aWMcomponent in our learning algorithm,
the learning rates for the RL system would have to be at least an order
of magnitude larger to capture the rapid rates at which people acquire
stimulus-response associations (in most cases one or two trials; cf.
fig. 2B). Moreover, without accounting for WM contributions to the
learningprocess, the learning rates in theRL systemwouldhave to vary
by set size. Thus, both within- (e.g., set size) and between-subjects
factors (e.g.,WMreliance, ρ) would confound estimates of incremental
learning rates in an RL system if WM is not accounted for. This result
highlights the prospect that many prior studies showing psycho-
pathological or neurological deficits in RL may have instead found
evidence of deficits in WM.

Controlling for the contributions of WM to the learning process,
we also find evidence that striatal dopamine signaling accelerates RL.
Specifically, wefind thatmethylphenidate boosts RL rates themost for
people who synthesize dopamine faster in the dorsal caudate nucleus.
This result mirrors prior work showing that methylphenidate pro-
motes plasticity for RL about rewards, especially for people with high
WM capacity54–56—a proxy for dopamine synthesis capacity40. More-
over, in another experiment conducted in the context of the current
study, we find thatmethylphenidate increases accuracy and prefrontal
BOLD signal response to rewards versus punishments, in a reversal
learning task, to a greater extent among individuals with higher
dopamine synthesis capacity57. One explanation for these effects is
that methylphenidate acts by blocking reuptake, and so it will have an
even larger effect for people who synthesize and therefore release
more dopamine in response to reward in the first place. The combi-
nation of greater release and reuptake blockade causes dopamine to
linger in the synapse for longer58, thereby constructively amplifying
LTP in response to phasic dopamine learning signals. It is also con-
ceivable that dopamine synthesis capacity might boost RL learning
rates as a main effect, but our study design was insensitive to this
relationship. Futurework could explore a wider range of set sizes (e.g.,
set size 6) where performancewould depend to an even greater extent
on RL mechanisms.

Although sulpiride clearly undermines performance, the
mechanisms are somewhat less resolved. Sulpiride causes perfor-
mance to decline both early and late in blocks, suggesting it may
impact both RL and WM processes. Model parameters suggest that
sulpiride diminishes performance because it reduces the degree to
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which WM contributes to behavior. Our analyses further suggest that
WM contributes less because of a faster decay of WM contents. Prior
work has shown that WM and RL systems work cooperatively to
accomplish learning, but, paradoxically, higher fidelity WM contents
attenuate RL because better WM-based predictions result in smaller
prediction errors7,9. Thus, if anything, faster-decaying, degraded WM
representations should yield stronger RL and better performance late
in a block. The fact that performance is also worse late in blocks sug-
gests that sulpiride may have detrimental effects on both RL and WM
systems.

While prior studies have shown a role for D2 receptors in sup-
porting WM function59–61, we did not predict that antagonism of D2
receptors with sulpiride would necessarily undermine performance or
reduce reliance on WM. In fact, sulpiride may strengthen rather than
weaken post-synaptic dopamine signaling by binding to pre-synaptic
D2 autoreceptors, thereby releasing a break on dopamine release. In
our own prior study24, we found evidence that was consistent with the
hypothesis that this dose of sulpiride strengthens post-synaptic
dopamine signaling. In that study, we had independent measures
(e.g., increased saccadic vigor) converging on the hypothesis that
sulpiride increased postsynaptic dopamine signaling—though we are
unable to make strong conclusions here. If the drug does have the
same postsynaptic effects in the context of this task, we speculate that
sulpiride may produce steeper effective WM decay by lowering the
barrier for WM gating. If the barrier is sufficiently low, hyper-flexibility
would undermine the stability of task-relevant representations across
trials. Indeed, in prior studies, we have found that both the dopamine
precursor levodopa62 and the D2 agonist bromocriptine63 can increase
distractor vulnerability in cognitive control andWMtasks. Pre-synaptic
effects in our prior study helped explain why sulpiride increased will-
ingness to performmore demanding WM tasks by making people less
sensitive to effort costs in our prior study. Thus, perhaps sulpiride,
when binding pre-synaptically, may both reduce sensitivity to effort
costs and make WM less effective by amplifying decay effects.

Finally, we note that while our paradigm is designed to dissociate
the effects of dopamine on RL versusWM,we do not believe that these
systems are independent. On the contrary, prior work has demon-
strated thatWMandRL systems interact cooperatively during learning
such that predictions maintained in WM can inform, and therefore
reduce the magnitude of prediction errors, paradoxically slowing the
effective RL rate9,29. We do not, therefore, infer that the apparently
selective effects of methylphenidate on RL and dopamine synthesis
capacity on WM in our dataset imply a lack of crosstalk. It is con-
ceivable, for example, that a real effect of dopamine synthesis capacity
on RL might have been masked by a countermanding effect of dopa-
mine synthesis capacity increasing WM reliance, which, in turn, blun-
ted prediction errors. Similarly, crosstalk between the systems might
have masked real effects of methylphenidate on WM contributions to
learning or real effects of sulpiride on the RL system.

Our results support multiple, complementary mechanisms by
which striatal dopamine influences task learning. Namely, we find that
individual differences in dopamine synthesis capacity correlate posi-
tively with baseline propensity to rely on WM. We also find that sul-
piride reduces reliance on WM, perhaps by undermining the stability
of WM contents over time. These effects indicate that striatal dopa-
mine can increase reliance on fast and flexible WM for learning. Yet,
even after accounting for the effects of dopamine onWM, we find that
striatal dopamine can accelerate slow learning processes as well.
Namely, we find that methylphenidate accelerates RL rates, consistent
with the hypothesis that striatal dopamine promotes plasticity on
slower time scales, too. Finally, we find evidence that pharmacological
enhancement of striatal dopamine signaling can blunt implicit effort
cost learning that happens when people perform demanding tasks.
This result complements prior work by showing that dopamine not

only influences effort-based decision-making at the timeof choice, but
also shapes the how people learn about effort costs in the first place.

Methods
The study was conducted in compliance with a protocol approved by
the regional research ethics committee (Commissie Mensgebonden
Onderzoek, region Arnhem-Nijmegen; 2016/2646; ABR:
NL57538.091.16). 100 Healthy, young adult participants (ages 18—43,
50men)were recruited fromNijmegen, TheNetherlands to participate
in a within-subject, double-blind, placebo-controlled study. Partici-
pants were screened to ensure that they are right-handed, Dutch-
native speakers, healthy, neurologically normal, and without a history
of mental illness or substance abuse. All participants gave written
informed consent to participate in this study. The first and last parti-
cipants were enrolled, respectively, on 10 February 2017 and 28
June 2018.

This experiment is part of a broader trial, investigating the effects
of dopaminergic drugs on cognitive control, registered with the
Overview of Medical Research in the Netherlands: https://
onderzoekmetmensen.nl/en/trial/43196. This study complies with
the International Committee of Medical Journal Editors (ICMJE)
guidelines on reporting. Not all of theprimary outcomes of the original
registered trial are reported here. In this study, we report specifically
on task behavior associatedwith the RLWM task, and also PET imaging
of striatal dopamine synthesis capacity (described below). No con-
clusions regarding other outcomes of the registered trial are being
made in this paper. A full characterization of our participant pool, a
detailed list of exclusion criteria, intake procedures, full drug admin-
istration protocol, and methods for measuring dopamine synthesis
capacity as well as the full set of covariate measures and tasks for this
broader study, are detailed in Määttä et al.64.

General procedure and tasks
Participants completed five visits as part of a broader study of the
effects of dopamine on cognitive control: one screening session,
three pharmaco-imaging sessions with multiple tasks performed in
and out of the fMRI scanner after being administered placebo, sul-
piride, or methylphenidate, and a final PET session for measuring
dopamine synthesis capacity. Participantswere assigned to complete
all three pharmaco-imaging visits in counterbalanced session order,
however, drug session order was imperfectly counterbalanced.
Consequently, 23, 15, and 10 participants took placebo on session
number 1, 2, and 3, respectively, while the numberswere 12, 18, and 18
for sulpiride, and 13, 15, and 20 for methylphenidate. Given data loss
and imperfect counterbalancing of drug by session order, we con-
firmed all inferences via hierarchical regression analyses, controlling
for session order.

During screening, after providing written consent, participants
completed—among other tests—medical and psychiatric screening
interviews, as well as tests of WM capacity, and fluid intelligence.

Participants were asked to refrain from smoking or drinking
stimulant-containing beverages the 24 h before a pharmaco-imaging
session, and refrain from using psychotropic medication and recrea-
tional drugs 72 h before each session and cannabis throughout the
experiment. At the beginning of a session, we measured baseline sub-
jective measures, mood and affect, as well as temperature, heart rate,
and blood pressure at baseline (also recorded after drug administra-
tion). Other tasks completed by participants, the results of which have
been reported elsewhere, included tasks assessing sensitivity to cogni-
tive effort costs and benefits24,27, tasks measuring creativity65,66, and a
Pavlovian-to-instrumental transfer task67. Participants also completed
two tasks in the fMRI scanner: one measuring striatal responsivity to
reward cues and a reversal learning task57. Finally, after the behavioral
sessions, but before the PET session, we also collected measures of
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depression, state affect, BIS/BAS, impulsivity, and the degree to which
participants pursue cognitively demanding activities in their daily life.

Participants were administered drugs prior to the task. To
accomplish double-dummy blinding, participants took one drug cap-
sule at each of two different time points: the first was either placebo or
400mg sulpiride, while the second was either placebo or 20mg
methylphenidate. 160min after takingmethylphenidate or placebo (or
placebo on sulpiride days), or 250min after sulpiride, participants
performed the RLWM task.

Reinforcement learning working memory task
The RLWM task was presented using Psychtoolbox-3 for MATLAB. As
described in the main text, participants completed two task phases: a
training phase and a test phase.

In the training phase, participants were presented with stimuli in
blocks of varying set sizes (between 2 and 5 stimuli in each block).
Stimuli were presented one-at-a-time and participants responded with
one of three button presses, assigned at random for each stimulus.
Note thatmultiple stimulimaymap to the samekeypress in eachof the
set size blocks. Participants were tasked with learning which of three
buttons corresponded to each stimulus through trial-and-error. Sti-
muli were presented in pseudo-random order, for nine iterations,
before switching to a new block. Participants completed between 2
and 3 blocks of each set size, also presented in pseudo-random order,
and new stimuli were used for each block.

If participants responded correctly on a given trial, they were
always given reward feedback (+1 or +2 points probabilistically: 20/80,
respectively), and if they were incorrect, they were always given zero
points. The number of points awarded on reward trials was not con-
tingent on performance and, correspondingly, we found no differ-
ences between computational models fit when assuming 0,1, or 2
points for reward trials versus those fit assuming a simpler binary {1,0}
for correct/incorrect trials. As such, we fit the learning algorithm (see
section on “Computational modeling of behavior”, below) assuming
the {1,0} binary.

At the end of the training period, participants completed a sur-
prise test phase in which pairs of stimuli were drawn from across all
blocks and participants were tasked with selecting which of each pair
was rewarded at a higher rate. Participants were not given feedback
about the accuracy of their response in the test phase. Because parti-
cipants were assigned the task of selecting which stimuli received
more points during the test phase, our analyses of the test phase
assumed that participants responded based on encoding reward out-
comes as either 0,1, or 2 points.

One participant’s data was excluded from analysis because their
average late-block accuracy in the training phase was below 53% in all
three sessions. A single session from another participant was excluded
because they did not complete the training phase. In addition, three
participants did not participate in the methylphenidate session, and
one participant did not complete their placebo session. In total, 95 out
of 100 methylphenidate, 97 out of 100 placebo, and 99 out of
100 sulpiride sessions were included in the final analysis of the training
phase. In the test phase, an error with response logging meant that
some sessions were excluded based on the criteria that we failed to
capture participants’ responses on at least 80% of trials. Additionally,
two participants were excluded based on their choice patterns, which
indicated that they merely alternated left/right presses on more than
75% of trials. In total, 69 out of 100 methylphenidate, 78 out of 100
placebo, and 80out of 100 sulpiride sessions were included in the final
analysis of the test phase.

For analysis of training phase accuracy, we included trials starting
after the first correct iteration of each stimulus to avoid analyzing
performance variance due to luck at the beginning of each block.
Finally, for the test phase, we excluded trials with a response time of
faster than 250ms to avoid analyzing trials on which participants were

merely guessing. The average of participants’ median response times
was 1070ms with a standard deviation of 443ms.

Trial-wise response accuracy in both phases was modeled with
fully random, Bayesian mixed effects logistic regression models using
Stan for full Bayesian inference, unless otherwise indicated. The brms
package version 2.8.0 was used to fit mixed effects regression models
along with R version 3.4.3. p-values were calculated from the effect
estimate and standard errors estimated from the upper and lower 95%
confidence intervals.

Our analysis involved two Bayesian regression models—one
modeling trial-wise response accuracy on the training phase, and
another modeling trial-wise accuracy during the test phase (selecting
the option that received rewards at a higher rate). The first model is
intended to evaluate the factors that index WM (e.g., smaller set size)
versus RL contributions to learning (more previous correct iterations
of a given stimulus), and how these indices are modulated by dopa-
minergic factors. The second model is intended to reveal the factors
thatmake the rewards thatwere associatedwith a stimulus seemmore
(higher actual reward rate) versus less valuable (whether stimuli were
encountered in a higher demand block).

The training phase model included independent variables which
were previously shown39 to influence choice accuracy. These included
the integer set size for the block in which the stimulus was learned (ns:
delay), or integer number of trials since a correct response was given
for each stimulus (nd), the integer number of previous correct
responses for that stimulus (pCor). Higher order interactionswere also
included to test hypotheses about how, for example, the effects of
delay and set size should diminish with an increasing number of prior
correct iterations.

Similarly, the test phase model included independent variables
which were previously shown39 to influence correct selection of the
stimulus which was rewarded most in each pair. These included the
actual difference in rewards earned for each stimulus (ΔV: value dif-
ference), the mean set size of the blocks from which the two stimuli
were learned (�ns), and the difference in the set size fromwhich the two
stimuli were learned (Δns). Note thatwe also included a variable for the
mean value of reward earned across the two stimuli in each pair (�V),
based on work showing that higher overall value of a choice set can
enhance value-based discrimination68.

Both the training and test phase models included dopamine
synthesis capacity and drug as predictors and interactions with the
task variables listed here. A full list of all variables included in the
model is listed in the Supplementary Tables along with their effect
estimates.

Computational modeling of behavior
We hypothesized that higher dopamine signaling may influence reli-
ance on WM and RL processes. To test these hypotheses more pre-
cisely, we adapted a learning algorithm10,12 involving both WM and RL
modules to support stimulus-response learning and fit it to behavior
which has been successfully applied to capture behavior and neural
dynamics during the RLWM task in both healthy and disordered
populations8,39.

Following a previous approach12, WM contributions were not
dynamically adjusted in the algorithm, based on the inferred reliability
of WM versus RL. While this elegant approach captures dynamic
adjustments to WM contributions across a block, we found that doing
so reduced model recoverability. Instead, we allowed WM reliance to
scale linearly with the number of unique, intervening stimuli since the
last correct response for each stimulus, reasoning that WM was likely
to contribute less to the extent that people encounter new, competing
information since their last experience with a given stimulus. Allowing
WM to contribute dynamically as a function of unique, intervening
items helped account for delay effects within blocks and influenced
overall reliance to WM for larger versus smaller blocks.
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In the model, RL proceeds by tracking action values via Rescorla-
Wagner style updating. Specifically, the value of a particular action a
for a given stimulus s (Q s,að Þ: policy) in the RL system is updated,
during learning, according to correct versus incorrect outcomes (r),
and a learning rate parameter (αRL) that, following

8 is discounted (by γ)
on incorrect trials to capture the tendency to neglect feedback about
incorrect responses.

Q s,að Þt  
Q s,að Þt�1 +αRL × rt�1 � Q s,að Þt�1

� �

Q s,að Þt�1 +αRL × γ × rt�1 � Q s,að Þt�1
� �

(

if
lt�1 = 1

rt�1 = 0
ð1Þ

The WM system also tracks action policies (WM s,að Þ), with an
instantaneous effective learning rate which also discounts incorrect
feedback to the same degree (γ) as the RL system.

WM s,að Þt  
rt�1

WM s,að Þt�1 + γ × �WM s,að Þt�1
� � if

rt�1 = 1

rt�1 = 0

�
ð2Þ

We assume that participants start each block with the belief that
all actions are equally likely to be correct for a given stimulus and so
assign an initial value of Q s,að Þ= 1=na, where na is the number of
possible actions (3) in this task. The WM system is subject to decay
(rate: ϕ) for all stimulus-action pairs that are not observed on a given
trial which then decay back towards the initial value prior.

WM s,að Þt  WM s,að Þt�1 +ϕ×
1
na
�WM s,að Þt�1

� �
ð3Þ

Action values from both the RL and WM systems are converted
into action probabilities via the softmax function, and the respective
probabilitiespRL andpWM are combined linearly.Note that because the
inverse temperature parameter can trade off with key parameters
including the learning rate andWMreliance,wechose tofix the inverse
temperature at a high value (β = 50) across all participants.

p= 1� ωð Þ×pRL +ω×pWM ð4Þ

The degree to which participants rely on WM versus RL to select
actions (ω) is defined by the parameter ρ, which can be thought of as a
participant’s baseline propensity to rely on WM versus RL, across
contexts. Overall reliance also depends on the ratio of WM capacity
(WMcap) to the number of unique, intervening stimuli encountered
since the last correct response for any given stimulus, k, (ndelay, k). This
modulation of ρ allows reliance on WM to decrease dynamically, per
item, as a function of delay.

ω= ρ× min 1,
WMcap

ndelay, k

 !

ð5Þ

Finally, to further constrain our parameter estimates, we also
leverage information about choices made during the test phase. Spe-
cifically, we included a critic which learns at the same rate as the RL
actor (αRL), accumulating information about the value of a stimulus
(averaged across all actions) V sð ÞRL.

V sð ÞRL, t  
V sð ÞRL, t�1 +αRL × rt�1 � V sð ÞRL, t�1

� �

V sð ÞRL, t�1 +αRL × γ × rt�1 � V sð ÞRL, t�1
� �

(

if
rt�1 = 1 correct

rt�1 = 0 incorrect

ð6Þ

We assume that the probability that a person selects a stimulus as
being rewarded the most in each pair p also depends on a softmax
transformation (again, withfixedβ= 50) of stimulus values topV ,RL and

a noise term ν to accommodate guessing during the test phase.

p=
1
2
ν + 1� νð Þ×pV ,RL ð7Þ

The final model thus contains six free parameters {αRL, γ, ϕ, ρ,
WMcap, ν}. All varied continuously except for WMcap, which was an
integer. For fitting, parameters were allowed to vary, respectively,
from a minimum of {0, 0, 0, 0, 2, 0} to a maximum of {1,1,1,1,5,1}. To
estimate the WMcap, we iterated over all integers from 2 to 5, opti-
mizing the likelihood function for all other parameters, for each
iteration. We selected as each individual’s WM capacity the values
which produced the highest likelihood values across all integer capa-
city values. Parameters were estimated for each subject by initializing
the action values uniformly across actions for both theWM and the RL
modules.

We fit variants of the learning algorithms presented in refs. 10,12
striking a balance between the sensitivity of algorithms which allow
WM contributions to vary dynamically as a function of reliability and
the simplicity of algorithms whichmaximize parameter recoverability.
We settled on a new variant (described above) in whichWM reliance is
a function of a baseline reliance parameter ρ, and the delay since the
last correct iteration of a stimulus (Supplementary Methods). All var-
iants were fit using the mfit toolbox (https://github.com/sjgershm/
mfit) inMATLABanduniformpriors for theWMcapacity, learning rate,
andWMreliance parameters. To avoidparameters going to bounds for
the WM decay, punishment neglect, and testing noise parameters, we
used very slightly informative priors (beta distributions with para-
meters α = 1:05 and β = 1:05). The model with recoverable parameters
and the best BIC score was selected. Fit quality for the winning model
was confirmedwith posterior predictive checks comparing real data to
data simulated from the model (Figs. S1A–C). The interpretability of
our maximum a priori parameter estimates was confirmed via para-
meter recovery exercises where combinations of parameters values
were selected at random from across the range of fitted values, data
were simulated from each model, and models re-fit. Finally, re-fitted
parameter values were compared to the original parameter
values (Fig. S2).

The fitted model captures qualitative effects of set size and
iteration number (Supplementary Fig. S1A). It also captures delay, early
versus late trials and the interactions of these variables with dopamine
variables including individual differences in dopamine synthesis
capacity, and drugs (Supplementary Fig. S1B, C). The model not only
provides an excellent fit to the data but is also recoverable, indicating
that individual participant-level parameter estimates are reliable and
interpretable (Supplementary Fig. S2). Prior to evaluating how para-
meters are altered by dopamine synthesis capacity and drugs, we
removed participants with outlier values (more than ± 2 standard
deviations from the mean) for parameters of interest to reduce the
likelihood that any single extreme and unlikely estimate exerts too
much leverage on the evaluation process. This resulted in the removal
of 5 participants from the methylphenidate session (5.3% of partici-
pants), 4 from the placebo session (4.2%), and 2 from the sulpiride
session (2.0%). After their removal, fitted values for the six free para-
meters {αRL, γ, ϕ, ρ, WMcap, ν} ranged from a minimum of {.00, .039,
.00, .62, 2, 0.026} to amaximumof {0.04, 0.84, 0.30, 1.00, 5, 0.14}. See
the SupplementaryMethods (Supplementary Fig. S3) for histogramsof
fitted parameter values and the cutoff for outlier values.

PET scanning
To measure dopamine synthesis capacity, participants completed a
PET scanning session using a Siemens mCT PET-CT scanner with
40 slices, 4 × 4mm in-plane voxels, and 5mm thick slices. Prior to
scanning, participants received 185MBq (5mCi) F-DOPA injections into
an antecubital vein. To increase [18F]-FDOPA concentrations,
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participants took 150mg carbidopa to decrease peripheral decarbox-
ylase activity, and 400mg entacapone to decrease peripheral COMT
activity 1 h prior to injection. The 89-min PET scan comprised four
1-min frames, then three 2-min frames, three 3-min frames, and finally
14 5-min frames.

PET images were reconstructed with weighted attenuation cor-
rection, time-of-flight correction, correction for scatter, and then
smoothed with a 3mm full-width-half-max kernel. To correct for head
movement, frames were realigned to the middle frame, using SPM12.
Next, images were co-registered with a structural T1-weightedMRI scan
(collected in the first screening session). Presynaptic dopamine synth-
esis capacity was calculated as the F-DOPA influx rate (Ki; min−1) per
voxel using the Gjedde-Patlak linear graphical analysis method for
frames between 24 and 89min and were referenced to signal in the
cerebellum gray matter. FreeSurfer was used to segment each partici-
pant’s high-resolution anatomical MRI scans. Ki maps were normalized
toMNI space and smoothed with an 8mm full-width half-max Gaussian
kernel. Finally, mean Ki values were extracted from sub-regions of the
striatum, including the dorsal caudate nucleus, defined in a prior study
on the basis of cortical functional connectivity patterns69.

Statistics and reproducibility
Our sample size was determined for the overarching project, across
multiple tasks, based on the effect size of a previous pharmacological-
behavioral study recently performed by our group (CMO Arnhem-
Nijmegen protocol 2013/568) as described in ref. 64. In that study, 95
participants received placebo and methylphenidate on two sessions
and performed a series of cognitive tasks. The effect size of that study
was r=0.30 (p <0.001, rank correction). Using a multiple linear
regression model with 7 predictor variables (7 task outcomes in over-
arching project) an effect-size of f2 = 0.1 (multiple regression equivalent
of r=0.3) we estimated that we would have 85% power (at p =0.05)
from a sample size of 92 subjects. We rounded our sample size up to
100 to account for potential drop-outs and technical problems.

Although, as noted, we had some data loss due to dropout and
data collection errors, no data were excluded from our analyses with
the exception of three participants for whom no test phase data were
collected across their three drug sessions (some training phase data
were collected, but these were excluded). All experiments were
double-blinded and, aside from a protocol deviation described in the
methods, participants completed all drug sessions in a randomized
order, using a crossover design.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data analyzed during the current study are available in
the Radboud Data Repository, https://doi.org/10.34973/0apx-ck49.

Code availability
The code for analyses and additionalmeasures are available at: https://
doi.org/10.34973/0apx-ck49.
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